

Message integrity

Message Auth. Codes

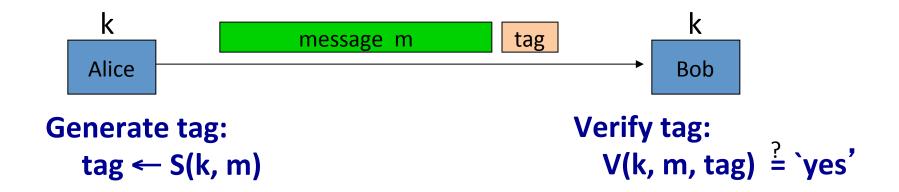
Message Integrity

Goal: **integrity**, no confidentiality.

Examples:

- Protecting public binaries on disk.
- Protecting banner ads on web pages.

Message integrity: MACs



Def: **MAC** I = (S,V) defined over (K,M,T) is a pair of algs:

- S(k,m) outputs t in T
- V(k,m,t) outputs 'yes' or 'no'

Integrity requires a secret key

Attacker can easily modify message m and re-compute CRC.

CRC designed to detect <u>random</u>, not malicious errors.

Secure MACs

Attacker's power: chosen message attack

• for $m_1, m_2, ..., m_q$ attacker is given $t_i \leftarrow S(k, m_i)$

Attacker's goal: existential forgery

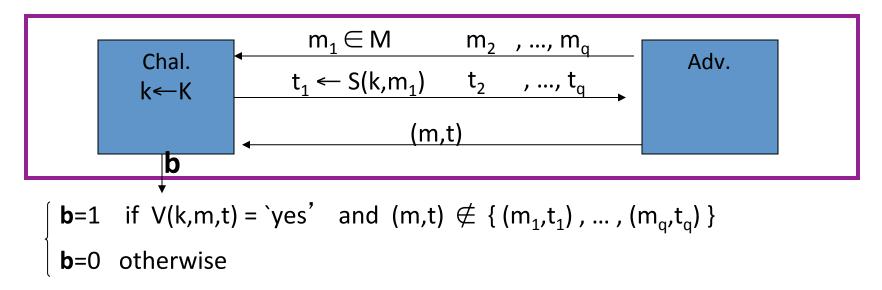
• produce some **new** valid message/tag pair (m,t).

$$(m,t) \notin \{ (m_1,t_1), ..., (m_q,t_q) \}$$

- ⇒ attacker cannot produce a valid tag for a new message
- \Rightarrow given (m,t) attacker cannot even produce (m,t') for t' \neq t

Secure MACs

For a MAC I=(S,V) and adv. A define a MAC game as:



Def: I=(S,V) is a **secure MAC** if for all "efficient" A:

 $Adv_{MAC}[A,I] = Pr[Chal. outputs 1]$ is "negligible."

Let I = (S,V) be a MAC.

Suppose an attacker is able to find $m_0 \neq m_1$ such that

$$S(k, m_0) = S(k, m_1)$$
 for ½ of the keys k in K

Can this MAC be secure?

- \bigcirc Yes, the attacker cannot generate a valid tag for m_0 or m_1
- No, this MAC can be broken using a chosen msg attack
 - It depends on the details of the MAC
 - Adv[A,]] = 1/2

Let I = (S,V) be a MAC.

Suppose S(k,m) is always 5 bits long

Can this MAC be secure?

- No, an attacker can simply guess the tag for messages
 - It depends on the details of the MAC
 - Yes, the attacker cannot generate a valid tag for any message

Example: protecting system files

Suppose at install time the system computes:

Later a virus infects system and modifies system files

User reboots into clean OS and supplies his password

Then: secure MAC ⇒ all modified files will be detected

End of Segment

Message Integrity

MACs based on PRFs

Review: Secure MACs

MAC: signing alg. $S(k,m) \rightarrow t$ and verification alg. $V(k,m,t) \rightarrow 0,1$

Attacker's power: chosen message attack

• for $m_1, m_2, ..., m_q$ attacker is given $t_i \leftarrow S(k, m_i)$

Attacker's goal: existential forgery

produce some <u>new</u> valid message/tag pair (m,t).

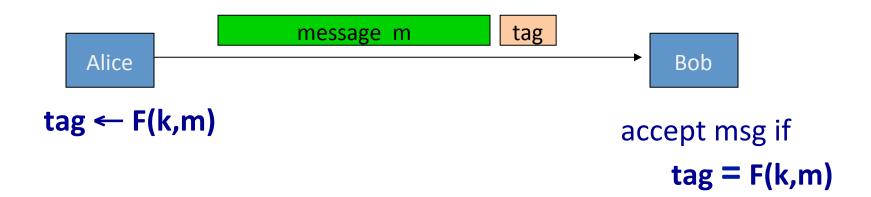
$$(m,t) \notin \{ (m_1,t_1), ..., (m_q,t_q) \}$$

⇒ attacker cannot produce a valid tag for a new message

Secure PRF \Rightarrow Secure MAC

For a PRF $\mathbf{F}: \mathbf{K} \times \mathbf{X} \longrightarrow \mathbf{Y}$ define a MAC $I_F = (S,V)$ as:

- S(k,m) := F(k,m)
- V(k,m,t): output 'yes' if t = F(k,m) and 'no' otherwise.



A bad example

Suppose $F: K \times X \longrightarrow Y$ is a secure PRF with $Y = \{0,1\}^{10}$

Is the derived MAC I_F a secure MAC system?

- Yes, the MAC is secure because the PRF is secure
- No tags are too short: anyone can guess the tag for any msg
 - It depends on the function F
 - Alu[A, I] = 1/1024

Security

<u>Thm</u>: If **F**: $K \times X \longrightarrow Y$ is a secure PRF and 1/|Y| is negligible (i.e. |Y| is large) then I_F is a secure MAC.

In particular, for every eff. MAC adversary A attacking I_F there exists an eff. PRF adversary B attacking F s.t.:

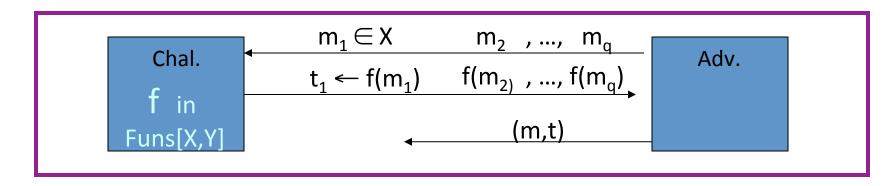
$$Adv_{MAC}[A, I_F] \leq Adv_{PRF}[B, F] + 1/|Y|$$

 \Rightarrow I_F is secure as long as |Y| is large, say |Y| = 2^{80} .

Proof Sketch

Suppose $f: X \longrightarrow Y$ is a truly random function

Then MAC adversary A must win the following game:



A wins if t = f(m) and $m \notin \{m_1, ..., m_a\}$

$$\Rightarrow$$
 Pr[A wins] = 1/|Y| same must hold for F(k,x)

Examples

AES: a MAC for 16-byte messages.

Main question: how to convert Small-MAC into a Big-MAC ?

- Two main constructions used in practice:
 - CBC-MAC (banking ANSI X9.9, X9.19, FIPS 186-3)
 - HMAC (Internet protocols: SSL, IPsec, SSH, ...)

Both convert a small-PRF into a big-PRF.

Truncating MACs based on PRFs

```
Easy lemma: suppose F: K \times X \longrightarrow \{0,1\}^n is a secure PRF. Then so is F_t(k,m) = F(k,m)[1...t] for all 1 \le t \le n of output
```

⇒ if (S,V) is a MAC is based on a secure PRF outputting n-bit tags
 the truncated MAC outputting w bits is secure
 ... as long as 1/2^w is still negligible (say w≥64)

End of Segment

Message Integrity

CBC-MAC and **NMAC**

MACs and PRFs

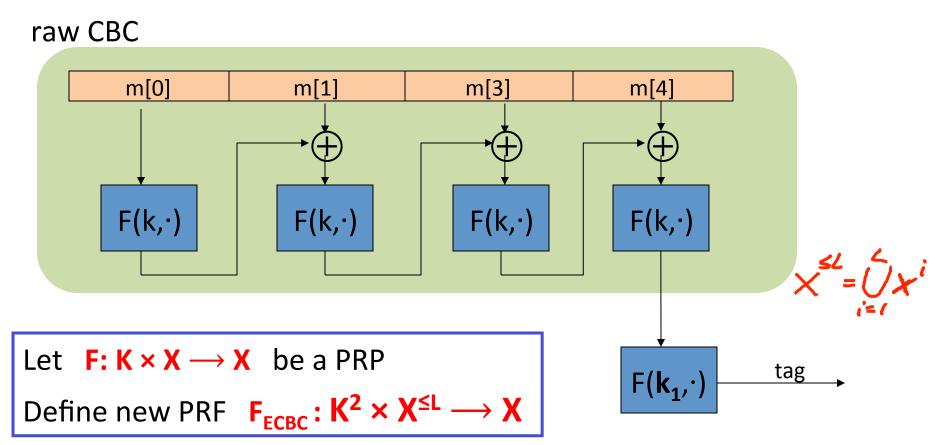
Recall: secure PRF $\mathbf{F} \Rightarrow$ secure MAC, as long as |Y| is large S(k, m) = F(k, m)

Our goal:

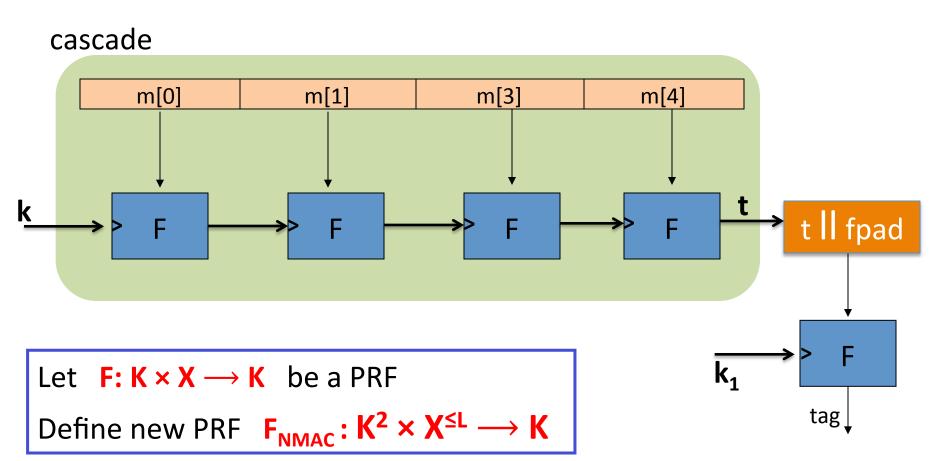
given a PRF for short messages (AES) construct a PRF for long messages

From here on let $X = \{0,1\}^n$ (e.g. n=128)

Construction 1: encrypted CBC-MAC



Construction 2: NMAC (nested MAC)



Why the last encryption step in ECBC-MAC and NMAC?

NMAC: suppose we define a MAC
$$I = (S,V)$$
 where

$$S(k,m) = cascade(k, m)$$

- This MAC is secure
- This MAC can be forged without any chosen msg queries
- This MAC can be forged with one chosen msg query
- This MAC can be forged, but only with two msg queries

Why the last encryption step in ECBC-MAC?

Suppose we define a MAC $I_{RAW} = (S,V)$ where

$$S(k,m) = rawCBC(k,m)$$

Then I_{RAW} is easily broken using a 1-chosen msg attack.

Adversary works as follows:

- Choose an arbitrary one-block message m∈X
- Request tag for m. Get t = F(k,m)
- Output t as MAC forgery for the 2-block message (m, t⊕m)

Indeed: rawCBC(k, (m, $t \oplus m$)) = F(k, F(k,m) \oplus (t \oplus m)) = F(k, t \oplus (t \oplus m)) = t

Dan Boneh

ECBC-MAC and NMAC analysis

<u>Theorem</u>: For any L>0,

For every eff. q-query PRF adv. A attacking F_{ECBC} or F_{NMAC} there exists an eff. adversary B s.t.:

$$Adv_{PRF}[A, F_{ECBC}] \le Adv_{PRP}[B, F] + 2 q^2 / |X|$$

$$Adv_{PRF}[A, F_{NMAC}] \le q \cdot L \cdot Adv_{PRF}[B, F] + q^2 / 2 |K|$$

CBC-MAC is secure as long as $q \ll |X|^{1/2}$ NMAC is secure as long as $q \ll |K|^{1/2}$

(2⁶⁴ for AES-128)

An example

$$Adv_{PRF}[A, F_{FCRC}] \leq Adv_{PRP}[B, F] + 2q^2/|X|$$

q = # messages MAC-ed with k

Suppose we want
$$Adv_{PRF}[A, F_{ECBC}] \le 1/2^{32} \Leftrightarrow q^2/|X| < 1/2^{32}$$

• AES: $|X| = 2^{128} \implies q < 2^{48}$

So, after 2⁴⁸ messages must, must change key

• 3DES:
$$|X| = 2^{64} \implies q < 2^{16}$$

The security bounds are tight: an attack

After signing $|X|^{1/2}$ messages with ECBC-MAC or $|K|^{1/2}$ messages with NMAC the MACs become insecure

Suppose the underlying PRF F is a PRP (e.g. AES)

• Then both PRFs (ECBC and NMAC) have the following extension property:

$$\forall x,y,w: F_{BIG}(k, x) = F_{BIG}(k, y) \Rightarrow F_{BIG}(k, x | w) = F_{BIG}(k, y | w)$$

The security bounds are tight: an attack

Let F_{RIG} : $K \times X \longrightarrow Y$ be a PRF that has the extension property

$$F_{BIG}(k, x) = F_{BIG}(k, y) \implies F_{BIG}(k, xllw) = F_{BIG}(k, yllw)$$

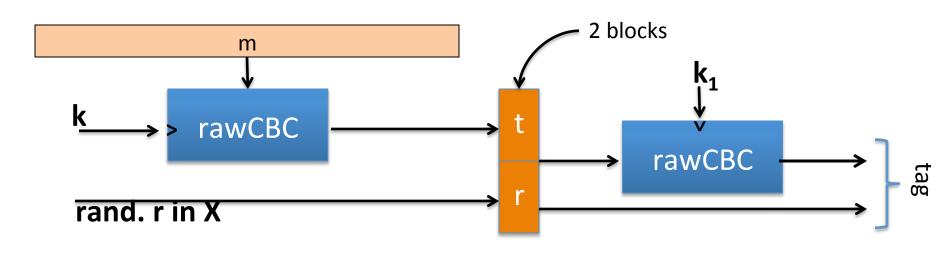
Generic attack on the derived MAC:

step 1: issue
$$|Y|^{1/2}$$
 message queries for rand. messages in X.
obtain (m_i, t_i) for $i = 1,..., |Y|^{1/2}$
step 2: find a collision $t_u = t_v$ for $u \neq v$ (one exists w.h.p by b-day paradox)

step 4: output forgery $(m_v ll w, t)$. Indeed $t := F_{BIG}(k, m_v ll w)$

step 3: choose some w and query for $t := F_{BIG}(k, \mathbf{m}_{u} \mathbf{l} \mathbf{l} \mathbf{w})$

Better security: a rand. construction



Let $F: K \times X \longrightarrow X$ be a PRF. Result: MAC with tags in X^2 .

Security: $Adv_{MAC}[A, I_{RCBC}] \leq Adv_{PRP}[B, F] \cdot (1 + 2 q^2 / |X|)$

 \Rightarrow For 3DES: can sign $q=2^{32}$ msgs with one key

Comparison

ECBC-MAC is commonly used as an AES-based MAC

- CCM encryption mode (used in 802.11i)
- NIST standard called CMAC

NMAC not usually used with AES or 3DES

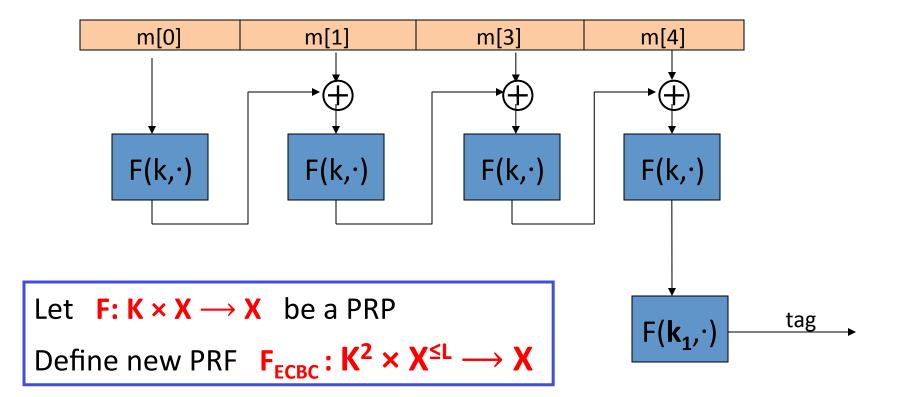
- Main reason: need to change AES key on every block requires re-computing AES key expansion
- But NMAC is the basis for a popular MAC called HMAC (next)

End of Segment

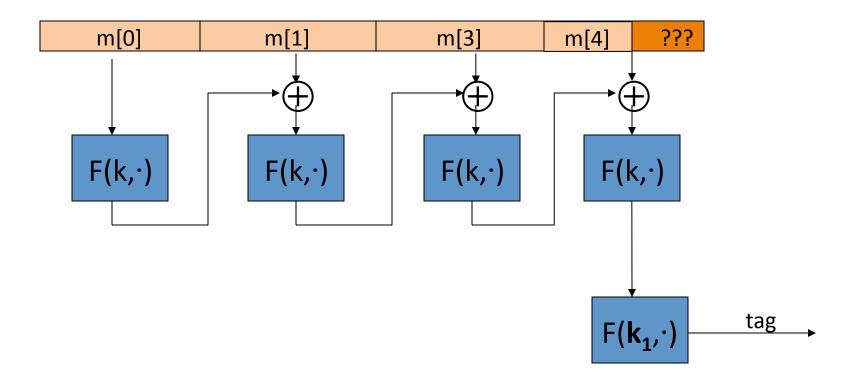
Message Integrity

MAC padding

Recall: ECBC-MAC



What if msg. len. is not multiple of block-size?



CBC MAC padding

Bad idea: pad m with 0's

Is the resulting MAC secure?

- Yes, the MAC is secure
- It depends on the underlying MAC
- No, given tag on msg m attacker obtains tag on mll0

Problem: pad(m) = pad(m|l0)

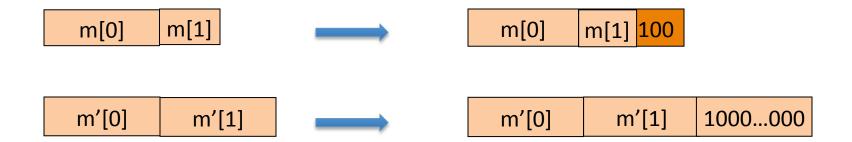
CBC MAC padding

For security, padding must be invertible!

$$m_0 \neq m_1 \implies pad(m_0) \neq pad(m_1)$$

ISO: pad with "1000...00". Add new dummy block if needed.

The "1" indicates beginning of pad.



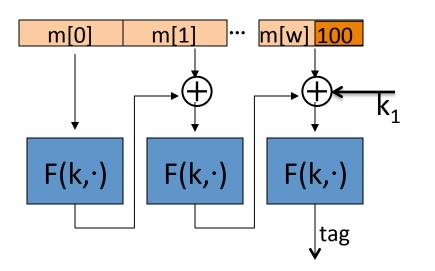
CMAC

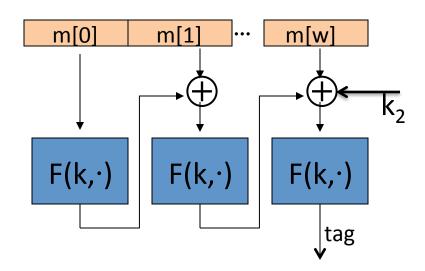
(NIST standard)

(Ki, Ki) derived From K

Variant of CBC-MAC where $key = (k, k_1, k_2)$

- No final encryption step (extension attack thwarted by last keyed xor)
- No dummy block (ambiguity resolved by use of k₁ or k₂)





End of Segment

Message Integrity

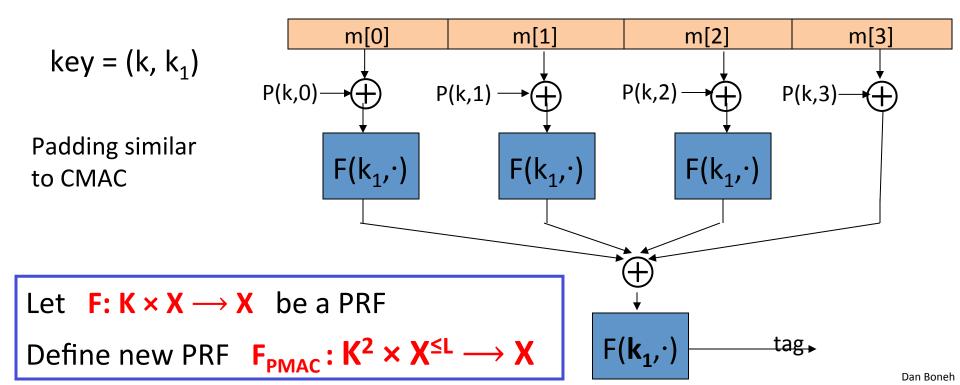
PMAC and Carter-Wegman MAC

ECBC and NMAC are sequential.

Can we build a parallel MAC from a small PRF ??

Construction 3: PMAC – parallel MAC

P(k, i): an easy to compute function



PMAC: Analysis

PMAC Theorem: For any L>0,

If F is a secure PRF over (K,X,X) then

 F_{PMAC} is a secure PRF over (K, $X^{\leq L}$, X).

For every eff. q-query PRF adv. A attacking F_{PMAC} there exists an eff. PRF adversary B s.t.:

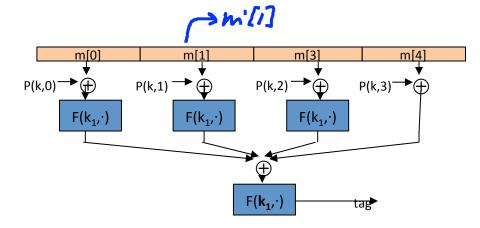
$$Adv_{PRF}[A, F_{PMAC}] \leq Adv_{PRF}[B, F] + 2 q^2 L^2 / |X|$$

PMAC is secure as long as $qL \ll |X|^{1/2}$

PMAC is incremental

Suppose F is a PRP.

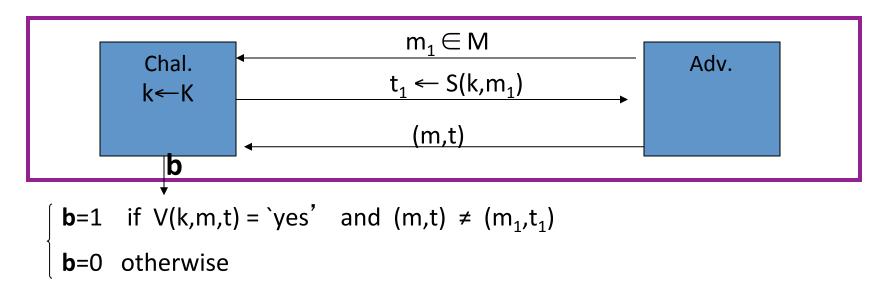
When $m[1] \rightarrow m'[1]$ can we quickly update tag?



- o no, it can't be done
- o no, it can t be done
- odo $F^{-1}(k_1, tag) \oplus F(k_1, m'[1] \oplus P(k,1))$ odo $F^{-1}(k_1, tag) \oplus F(k_1, m[1] \oplus P(k,1)) \oplus F(k_1, m'[1] \oplus P(k,1))$
- do tag \oplus F(k_1 , m[1] \oplus P(k,1)) \oplus F(k_1 , m'[1] \oplus P(k,1))
- Then apply $F(k_1, \cdot)$

One time MAC (analog of one time pad)

• For a MAC I=(S,V) and adv. A define a MAC game as:



Def: I=(S,V) is a **secure MAC** if for all "efficient" A:

 $Adv_{1MAC}[A,I] = Pr[Chal. outputs 1]$ is "negligible."

One-time MAC: an example

Can be secure against <u>all</u> adversaries and faster than PRF-based MACs

```
Let q be a large prime (e.g. q = 2^{128}+51)
key = (a, b) \in \{1,...,q\}^2 \qquad (two random ints. in [1,q])
msg = (m[1], ..., m[L]) \quad where each block is 128 bit int.
S(key, msg) = P_{msg}(a) + b \quad (mod q)
```

We show: given S(key, msg₁) adv. has no info about S(key, msg₂)

where $P_{msg}(x) = x^{L+1} + m[L] \cdot x^{L} + ... + m[1] \cdot x$ is a poly. of deg L+1

One-time security (unconditional)

Thm: the one-time MAC on the previous slide satisfies (L=msg-len)

$$\forall m_1 \neq m_2, t_1, t_2$$
: $Pr_{a,b}[S((a,b), m_1) = t_1 | S((a,b), m_2) = t_2] \leq L/q$

Proof: $\forall m_1 \neq m_2, t_1, t_2$:

(1)
$$Pr_{a,b}[S((a,b), m_2) = t_2] = Pr_{a,b}[P_{m_2}(a)+b=t_2] = 1/q$$

(2)
$$Pr_{a,b}[S((a,b), m_1) = t_1 \text{ and } S((a,b), m_2) = t_2] =$$

$$Pr_{a,b}[S((a,b), m_1) = t_1 \text{ and } S((a,b), m_2) = t_2] =$$

$$Pr_{a,b}[P_{m_1}(a) - P_{m_2}(a) = t_1 - t_2 \text{ and } P_{m_2}(a) + b = t_2] \le L/q^2 \blacksquare$$

 \Rightarrow given valid (m_2,t_2) , adv. outputs (m_1,t_1) and is right with prob. $\leq L/q$

One-time MAC ⇒ Many-time MAC

Let (S,V) be a secure one-time MAC over $(K_I,M,\{0,1\}^n)$. Let $F: K_F \times \{0,1\}^n \longrightarrow \{0,1\}^n$ be a secure PRF.

slow but fast short inp long inp

Carter-Wegman MAC: $CW((k_1,k_2), m) = (r, F(k_1,r) \oplus S(k_2,m))$ for random $r \leftarrow \{0,1\}^n$.

<u>Thm</u>: If (S,V) is a secure **one-time** MAC and F a secure PRF then CW is a secure MAC outputting tags in $\{0,1\}^{2n}$.

CW(
$$(k_1,k_2)$$
, m) = $(r, F(k_1,r) \oplus S(k_2,m))$

How would you verify a CW tag (r, t) on message m?

Recall that $V(k_2,m_1)$ is the verification alg. for the one time MAC.

- O Run V(k_2 , m, $F(k_1, t) \oplus r$)
- \bigcirc Run V(k_2 , m, r)
- \bigcirc Run V(k₂, m, t)
- \bigcirc Run V(k₂, m, F(k₁, r) \oplus t))

Construction 4: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

... but, we first we need to discuss hash function.

Further reading

- J. Black, P. Rogaway: CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions. J. Cryptology 18(2): 111-131 (2005)
- K. Pietrzak: A Tight Bound for EMAC. ICALP (2) 2006: 168-179
- J. Black, P. Rogaway: A Block-Cipher Mode of Operation for Parallelizable Message Authentication. EUROCRYPT 2002: 384-397
- M. Bellare: New Proofs for NMAC and HMAC: Security Without Collision-Resistance. CRYPTO 2006: 602-619
- Y. Dodis, K. Pietrzak, P. Puniya: A New Mode of Operation for Block Ciphers and Length-Preserving MACs. EUROCRYPT 2008: 198-219

End of Segment