Online Cryptography Course Dan Boneh

Stream ciphers

The One Time Pad




Symmetric Ciphers: definition

Def: a cipher defined over /3() . e)

is a pair of “efficient” algs (E, D) where

E: XM —=3 ) O: Kx2 —M
sl Voell, wed: 0(, £(¢m))=m

e E isoftenrandomized. D is always deterministic.



The One Time Pad (Vernam 1917)

First example of a “secure” cipher

M=C=lty ,  Kla)

key = (random bit string as long the message)



The One Time Pad (Vernam 1917)

C:=E(m) = KM /msg: 0110111 @\
O k,e) = k@ key: 1011010
CT:
. /
Zp.p/@(’/:

D(¥) EG‘/“/} = Dk, k@) = k1) = (LBL) M= 0 Dy = 1o



You are given a message (m) and its OTP encryption (c).

Can you compute the OTP key from m and c?

No, | cannot compute the key.

Yes, thekeyis k=m®dc. <

| can only compute half the bits of the key.
Yes, thekeyis k=m & m.



The One Time Pad

Very fast enc/dec !!
... but long keys (as long as plaintext)

Is the OTP secure? Whatis a secure cipher?

(Vernam 1917)



What is a secure cipher?

Attacker’s abilities: CT only attack  (for now)

Possible security requirements:

attempt #1: attacker cannot recover secret key
5(’6/ m) =ha VOU// be serLre

attempt #2: attacker cannot recover all of plaintext
E(K/ Moyhl)z "‘o// K@Ml voo// be Serre

Shannon’s idea:
CT should reveal no “info” about PT



Information Theoretic Security
(Shannon 1949)

Def: A cipher (E, D) over (K, M,C) has perfect secrecy if
Vionig €l (lemn)=lestw)) — aud Vee

/ bl EGm) <<\ - Me(wfcﬂ
Uheee 12 5 wac{orm M K ( u <E— K )




Information Theoretic Security

Def: A cipher (E,D) over (K,M,C) has perfect secrecy if
Vmg, m; EM (|mg] =|m,|) and VceC

Pr[ E(k,my)=c] = Pr[E(k,m,)=c] where k —K

= (e €7 cant lell (£ w8y 5 M, or my (For all mym,)
= bhaost f,weMI slv  leapns Ma'“c‘l? obol PT  Foom T

— ho C7 oh// 44{‘““.{.{ (h/( oUmr q{éauz_s 104{.{:#8/



Lemma: OTP has perfect secrecy.

Proof:

#‘Keys Ke’?,( s{ E(K,A/:'c

Vim ¢ lp[[f("/“‘)‘clz ]

o o \/W‘,C—’ #Zkéj,(: E(K/Io./':C) = Con g%,
——) Ciﬂ/ler l’lﬂS Fer‘rfc'{ .Sel'ré’C/



let meM and ceC.
How many OTP keys map m to ¢ ?

None
1 éi::_:"_
2

Depends onm



Lemma: OTP has perfect secrecy.

Proof:
For DOTP: VIM C NS E((( ha)-: <
= UPm=C =5 K=mBa

— [#irek Esrr=dh=1 [

= oTp s perfect Secrecy B




The bad news ...

Thm: perfect secrecy = | K| = | M|

ce. fer-F;c{ Secrecy == ey - e = ""SJ"/U'

:.f> tlﬂl'-/ -ép vse (U F}*acé‘(& /(



End of Segment
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Stream ciphers

Pseudorandom
Generators




Review
Cipher over (K,M,C): a pair of “efficient” algs (E, D) s.t.
vV meM, kekK: D(k, E(k, m))=m
Weak ciphers: subs. cipher, Vigener, ...
A good cipher: OTP  M=C=K={0,1}"
E(k, mM)=k@ m , D(k,c)=kc

Lemma: OTP has perfect secrecy (i.e. no CT only attacks)

Bad news: perfect-secrecy = key-len > msg-len



Stream Ciphers: making OTP practical

idea: replace “random” key by “pseudorandom” key

S "
(RG & « Joncdion G {01} = (o) s> <
—
seed
S/oace

lé’q.- C%fv {,aéle b)’ V4 ﬁ/f{?fh(‘hth{‘( 4’7’“‘{"’)



Stream Ciphers: making OTP practical

¢ = k)= m@elk) b

D(K/(): C@&(K) @l 4(1()

nnnnnnn



Can a stream cipher have perfect secrecy?

Yes, if the PRG is really “secure”
No, there are no ciphers with perfect secrecy

Yes, every cipher has perfect secrecy

O O O O

No, since the key is shorter than the message =—



Stream Ciphers: making OTP practical

Stream ciphers cannot have perfect secrecy !!
* Need a different definition of security

» Security will depend on specific PRG



PRG must be unpredictable
§u//)/ge VT /}e% clolle .

[
1 @) e do)f
.., +, ..~
~Thek: |
L C |
® . e ven 4(5// __35(/(//
i :,i L. ()
(¢ 2z ]

S @ p?‘oUeh{

nnnnnnnn



PRG must be unpredictable

We say that G: K — {0,1}" is predictable if:
3 AT a/J_ A ad Fgsci<cwy st

fr [A(u«;)) - g(z)/ |>tre
ket ) (+|

:or‘ Woh— Plea /L‘ga‘ye s [6 J 2” 30)

Def: PRG is unpredictable if it is not predictable

= Vi: no “eff” adv. can predict bit (i+1) for “non-neg” ¢

Dan Boneh



Suppose G:K — {0,1}" is such that for all k: XOR(G(k)) =1

Is G predictable ??

Yes, given the first bit | can predict the second
No, G is unpredictable

Yes, given the first (n-1) bits | can predict the n’th bit =—
It depends



Wea k P RGS (do not use for crypto)

Ld« C_oha 8@1187‘6{{4)‘ W(‘(Iﬂ P“"ﬂme{ers 4/4//3.,

)‘[L&e—' a-r[i<i\+b mot P seed = r[o)
ouéft/(: bets of r—[tl

C++

L

/glibc random():

hever vse randou ()
rli] ¢ ( rli-3] +r[i-31]) % 232 For coypte !

output r[i] >>1 Y. [e.j, Kerberss V)




End of Segment
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Stream ciphers

Negligible vs.
non-negligible




Negligible and non-negligible

In practice:

— € non-neg:

€ is ascalar and
€21/230

— € negligible: €<1/280

(likely to happen over 1GB of data)

(won’t happen over life of key)

In theory: €& isafunction E&: 7% 5 R* and

— g€ non-neg: 3d: €(A) 21/AY inf often (€ > 1/poly, for many A)

— € negligible: Vd, A2A:

g(N) £1/N\¢ (€ < 1/poly, for large A)



Few Examples

g(N) =1/2* : negligible

1/2*  forodd A
g(A) = [1/A000 foreven A

Negligible

Non-negligible é-——-_-'

g(A) = 1/A1000 .

non-negligible



PRGs: the rigorous theory view

PRGs are “parameterized” by a security parameter A
* PRG becomes “more secure” as A increases

Seed lengths and output lengths grow with A

Forevery A=1,2,3,... thereis a different PRG G;:

G, : K, — {O,l}n(h)

(in the lectures we will always ignore A)



An example asymptotic definition

We say that G, : K, — {O,l}nm is predictable at position i if:

there exists a polynomial time (in A) algorithm A s.t.

Prk<—|<7\[ A(n, G;\(k)‘l N ) = G"(k)‘i+1 ] > 172+

for some non-negligible function &(A)




End of Segment
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Stream ciphers

Attacks on OTP and
stream ciphers




Review

OTP: E(kM)=m&k , D(kc)=cPk

Making OTP practical using a PRG:  G: K — {0,1}"

Stream cipher: E(km)=m & G(k) , D(k,c)=c&@ G(k)

Security: PRG must be unpredictable (better def in two segments)



Attack 1: two time pad isinsecure !!

Never use stream cipher key more than once !!
C, < m; @ PRG(k)
C, < m, @ PRG(k)

Eavesdropper does:

Enough redundancy in English and ASCIl encoding that:
m®m, - m;, m,



Real world examples

* Project Venona

e MS-PPTP (windows NT):




Real world examples

802.11b WEP:
)
>

ciphetext

Length of IV: 24 bits
* Repeated IV after 2?4 = 16M frames
* Onsome 802.11 cards: |V resets to 0 after power cycle



Avoid related keys

802.11b WEP:

k| ’ ‘ | ’
For the R FRG-
key for frame #1: (11l k) FMS20a) = cah recoveq &

ot #2 1 atéer (0° Frames
ey for frame
Y % S Recet al lacns =~ 4ppp, fiawmes

: TN “S b {S

Dan Boneh



A better construction

I -

/Lz\x

Key HLo Key Loy
Frame #1 trame #2

= now each frame has a pseudorandom key

better solution: use stronger encryption method (as in WPA2)

Dan Boneh



Yet another example: disk encryption

_

—-fﬂ". 6 ﬂb Eh(_ /(:S/( . ’
| Qg {
' Oh/\/
chym
Aafﬂ‘“ ( ;ﬁ
To: Evi i
N\/—f—-—sz enc. 44514\ |
(2) | —= — ot =<5z
—~———
/\.;—\_\




Two time pad: summary

Never use stream cipher key more than once !!

Network traffic: negotiate new key for every session (e.g. TLS)

Disk encryption: typically do not use a stream cipher



Attack 2: no integrity (OTPis malleable)

enc ( Pk) X ok

P

T O Taeaes

Modifications to ciphertext are undetected and
have predictable impact on plaintext




Attack 2: no integrity (OTPis malleable)

enc k
From: Bob (69 ) > From:..Bob 69
From: Eve € dec(@k) Exonmi--Eve
Bob E v e Bbo Eve
42 6F 62 45 26 65 o7 14 ot oF (? o3

Modifications to ciphertext are undetected and
have predictable impact on plaintext



End of Segment
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Stream ciphers

Real-world Stream
Ciphers




Old example (software). RC4 (1987)

2048 bits

1 byte
per round

128 bits

seed

Used in HTTPS and WEP

Weaknesses:
1. Biasininitial output: Pr[2™byte=0] = 2/256
2. Prob.of (0,0) is 1/256%+ 1/2563
3. Related key attacks



Old example (hardware). CSS (badly broken)

Linear feedback shift register (LFSR):

—>

\_,.»/} [ [ [ [ [ [/
W seed= tactl. vatva
X7

DVD encryption (CSS): 2 LFSRs
GSM encryption (A5/1,2): 3 LFSRs

— all broken

Bluetooth (EO): 4 LFSRs



o
1

Old example (hardware). CSS (badly broken)
CSS: seed =5 bytes = 40 bits
seod
st 2 - g A
5;“’5 = [kt F5x | ' 7—%&4/25(/7 f o one oo
o L)F l ‘ ll?/ a {(\Ae
|et 3 — [257ht LFsk (— — f
L)/{fﬁ - ' \Z
carry from
P"GV('WS Hd(
— b . . /9
Easy {o Dreax u {me o 5°



Cryptanalysis of CSS (277 time attack)

3 encrypted movie

17-bit LFSR

’ : D

+ (mod 256) > prefix

25-bit LFSR 3 ,
CSS prefix

For all possible initial settings of 17-bit LFSR do:

 Run 17-bit LFSR to get 20 bytes of output
e Subtract from CSS prefix = candidate 20 bytes output of 25-bit LFSR

* If consistent with 25-bit LFSR, found correct initial settings of both !!

Using key, generate entire CSS output

Dan Boneh



Modern stream ciphers:

PRG: {0,1F x R — {0,1}"
o
seed Lhol‘l(&

Nonce: a non-repeating value for a given key.

E(k, m;r) = m @ PRG(k ; r)

The pair (k,r) is never used more than once.

eStream

nnnnnnnn



eStream: Salsa 20 (sw+Hw)

J———hoh(e,
Salsa20: {0,1}1280r256 x {0,1}*4 — {0,1} (max n = 273 bits)

Salsa20(k;r) :

K
o —
i

32 bytes

H(k, (r,0) I H(k,(r,1)) Il..

64 byte
output ~

h

(10 rounds)

64 bytes 64 bytes

h: invertible function. designed to be fast on x86 (SSE2)

Dan Boneh



Is Salsa20 secure (unpredictable) ?

Unknown: no known provably secure PRGs

In reality: no known attacks better than exhaustive search



Performance:

AMD Opteron, 2.2 GHz

eStream -

( Linux)

PRG

RC4
Salsa20/12

Sosemanuk

Crypto++ 5.6.0 [ Wei Dai ]

Speed (MB/sec)

126

643
727



Generating Randomness  (eg. keys, Iv)

! ENLToOpY

Pseudo random generators in practice: (e.g. /dev/random)

* Continuously add entropy to internal state

* Entropy sources:
* Hardware RNG: Intel RdRand inst. (lvy Bridge). 3Gb/sec.
* Timing: hardware interrupts (keyboard, mouse)

NIST SP 800-90: NIST approved generators

Dan Boneh
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Stream ciphers

PRG Security Defs




Let G:K — {0,1}" be a PRG

Goal: define what it means that

JrEK alat &)

is “indistinguishable” from

v 4_4/59,/3‘1 akpt r)




Statistical Tests

ko'{ rau /om

Statistical test on {0,1}": M /‘ rau doss

analg. A s.t. A(x) outputs “0” or “1”

Examples:

A= oFf | #ol) - #1&// < lo- /7
) A=t A5 /#oo[x}— 24}/ < lo- 7

nnnnnnnn



Statistical Tests

More examples:

(3) Abd=1 FE  maxrin-o-0(5) < |0 log, (h)

® Q2 8 9

nnnnnnnn



Advantage

let G:K —{0,1}" beaPRG and A astat.teston {0,1}"

Define:

/V/%[ﬂ/,g.]::: A [ﬂ/é(ld/z/] ﬂ- [ﬂ(r)*/] / e lo ]
rh(qz

Adv clse to L = A can dist G From vaudoma
AJU close 4o 0o — /4 Cﬂubto'(‘

Asilly example: A(x) =0 = Advygs [AG] = -



Suppose G:K —{0,1}" satisfies msh(G(k)) =1 for 2/3 of keys in K

Define stat. test A(x) as:
if [ msb(x)=1 ] output “1” else output “0”

Then
2/3 VR
— —_— —

Advere [AG] = | PrLA(G(K)=1] - PrlA(r)=1] ]| =




Secure PRGs: crypto definition

Def: We say that G:K —{0,1}" is a secure PRG if
Vool " el {esds A

A/UPM [4 6) S “116‘5 /c‘géé/e !

Are there provably secure PRGs?

but we have heuristic candidates.



Easy fact: a secure PRG is unpredictable

We show: PRG predictable = PRG is insecure

Suppose A is an efficient algorithm s.t.

P;,.[ 4[4(14/)’ )"’ 40‘} j( > £Lrg
pE9 .

for non-negligible € (e.g. £=1/1000)



Easy fact: a secure PRG is unpredictable

Define statistical test B as:

Bog= | £ AN Xe o L

4yl

e/fe ouépuf o)

L Zo;l_’)“ : ﬂr[ BLr) ’—"/l =z
- Cﬁ_}( : FV[B/G(")/z/l >é+£
_ Mvm [8¢] = } h(86)=)) — A [BLeC))=1]| = &

nnnnnnnn



Thm (yao’82): an unpredictable PRG is secure

Let G:K —{0,1}" be PRG
“Thm”: if Vi€e{0,..,n-1} PRG G isunpredictable at pos. i

then G is asecure PRG.

If next-bit predictors cannot distinguish G from random
then no statistical test can !!



Let G:K —{0,1}" be a PRG such that
from the last n/2 bits of G(k)
it is easy to compute the first n/2 bits.

Is G predictable for somei € {0, ..., n-1} ?

O Yes &=
O No



More Generally

Let P, and P, be two distributions over {0,1}"

Def: We say that P, and P, are
computationally indistinguishable (denoted “ﬁzpﬁ )

oY ST stal Aesds A
r =/] — ALY =/ hesl: ('/
o [ntg== B[] < neglgie

x<f

Example: a PRGissecureif {k<>K: G(k)} =  uniform({0,1}")

Dan Boneh
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Stream ciphers

Semantic security

Goal: secure PRG = “secure” stream cipher



What is a secure cipher?

Attacker’s abilities: obtains one ciphertext (for now)

Possible security requirements:

attempt #1: attacker cannot recover secret key
E(gn)=hm
attempt #2: attacker cannot recover all of plaintext
E(&/ Wo//“": )"’" h"o//”')@l<

Recall Shannon’s idea:
CT should reveal no “info” about PT



Recall Shannon’s perfect secrecy

Let (E,D) be a cipher over (K,M,C)

(E,D) has perfect secrecy if Vmg,m, €M ( |[my|=|m,|)
{E(k,my)} = {E(km;)} where kK

(E,D) has perfect secrecy if Vmg,m, €M ( |my|=|m|)
{E(k,mg) } =, {E(km;)}  where ke—K

... but also need adversary to exhibit m,, m; € M explicitly



Semantic Security (one-time key)

For b=0,1 define experiments EXP(0) and EXP(1) as:

b

<

mg,m; e M: |[my| =|my|

C < E(k, mh)

for b=0,1: W, :=[ event that EXP(b)=1 ]

b e 01)

Advg[AE]:= | Priw,]1- Priw,]1| €10,1]



Semantic Security (one-time key)

Def: E is semantically secure if for all efficient A

Adv.[AE] is negligible.

= forall explicitm,, m; e M: {E(k,m,) } =, {E(k,m,) }



Examples

Suppose efficient A can always deduce LSB of PT from CT.

= E =(E,D) is not semantically secure.

lbefo,1)
v

m,, LSB(m,)=1

LSB(m, )=b

Adv. B (us)

v

Then Adv.[B, E| = | Pr[EXP(0)=1]1- Pr[ EXP(1)-1] |=-



OTP is semantically secure

(0,1}

EXP(0): my, m; e M: [mg| =|m,|
/(- c < kPm, . =
/identical distributions
m&,m eM: |my|=|m,]
EXP(1): < - : -

\ c<—k@m1

V4

(0,1}

Forall A: Adv.[A OTP] = ‘ Prl A(kbmy)=1] - Pr[ A(kbm,)=1] .




End of Segment
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Stream ciphers

Stream ciphers are
semantically secure

Goal: secure PRG = semantically secure stream cipher



Stream ciphers are semantically secure

Thm: G:K —{0,1}" isa secure PRG =

stream cipher E derived from G is sem. sec.

V sem. sec. adversary A, Ja PRG adversary B s.t.

AdV. [AE] < 2 - AdVpec[B,G]



Proof:

Mgy, My N
chal. | < adv. A
kek | c< Mg G(k)
>
b’'=1
l %
Mg, My N
chal. |« adv. A
kek | c< mq D G(k)
>
lb’él

INtultion
/ chal. |« Mo M adv. A \
zp r<{0,1}" c<—m0®r
\_ _ lb’éy
p
g m. m )
chal. | < 2 | adv. A
zp r<{0,1}))| c< M;Dr
|b'<




Proof: Let A be asem. sec. adversary.

<

mg,my e M: |[mgy| =|my|

"b’ e {0,1}

For b=0,1: W, := [eventthatb’=1].

Adv[A,E] = ‘ Pr{Wy] - Pr[W,] |



Proof: Let A be asem. sec. adversary.

<

mg,my e M: |[mgy| =|my|

C(—mb®r

"b’ e {0,1}

For b=0,1: W, := [eventthatb’=1].

Adv[A,E] = ‘ Pr{Wy] - Pr[W,] ‘

For b=0,1: R, := [eventthatb’=1]



Proof: Let A be asem. sec. adversary.

Claim1:  |Pr[R)] - Pr[R,]| = Adv, [4, o1%] =O
Claim2: 3B: |Pr{w,]-Pr[R,]| = Adv, [84) Fr b=g}

} } } } |
0 Pr{W] PriRy]  Pr[W]

,l)JV [MJ ﬂ/m [84)

= Adve[AE] = | Priw,] — Pr[W,]| < 2 - Adv,g.[B,G]



Proof of claim 2: 3B: | Pr[W,] = Pr[R,] | = Advpr[B,G]

Algorithm B:

y €{0,1}" > | PRG adv. B (us)

Mg, My

c <« myDy

< b’ € {0,1}

re—{a1 o

Advye [B,Gl = | Fr . . [B(r)-—-/]" b [Blete) =1] ’ :lﬂ[,ef,]-ﬁ n/o]f

Dan Boneh
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