
AMD Secure Random Number Generator Library

INTRODUCTION

Random numbers and their generation is a crucial component in many areas of

computational science. Monte Carlo simulation, modeling, cryptography, games and many

more. One of the vital fields where random numbers are used is Cryptography.

Cryptographic applications require random numbers for key generation, encrypting

messages or to mask certain content. In order to be secure, they need high quality random

numbers that must be unpredictable and robust.

There are mainly two types of Random Number Generators (RNG); software based

pseudorandom number generators (PRNG) and hardware random number generators.

Pseudorandom number generators use a mathematical model and are implemented in

software. Hardware random number generators on the other hand, rely on a dedicated

hardware unit to generate random numbers.

• Pseudorandom number generators: Pseudorandom number generators follow a

deterministic approach and an algorithmic implementation of a mathematical model.

Depending on the initial state (seed), they generate a sequence of random numbers.

While they may have good statistical properties (statistically independent and

uniform distribution), they are vulnerable to state compromise attacks once an

adversary becomes aware of the seed. If one is able to guess the initial state of the

generator and the mathematical model, they will be able to calculate rest of the

sequence of random numbers. Hence pseudorandom numbers are not a good choice

for cryptographic applications.

• Hardware random number generators: Hardware random number generators

provide more unpredictable random numbers. They generate random numbers

utilizing a hardware unit as a source of entropy (randomness) unlike a fixed

mathematical model in PRNG. Determining pattern of random numbers from such

a physical source is much harder and hence have more suitable cryptographic

properties. AMD’s latest microprocessor architecture are equipped with

Cryptographic Co-processor hardware that enables generation of cryptographically

secure random numbers.

In this whitepaper, we provide details on AMD Secure Random Number Generator

(Secure RNG) library which provides an easy-to-use software Application Programming

Interface (API) to access random numbers generated by AMD’s hardware RNG

implementation.

AMD HARDWARE RNG ARCHITECTURE

AMD’s Family 17h processor and other products of 2016 and beyond are equipped

with Cryptographic Co-processor 5.0 hardware that enables the generation of

cryptographically secure random numbers.

AMD’s hardware RNG architecture is shown in the figure below

source:AMD RNG Whitepaper by David Kaplan[3]

Figure 1. AMD Hardware RNG Architecture

The main components are

1. Noise Source: The RNG uses 16 separate ring oscillator chains as the noise source.

During runtime, the 16 ring oscillators are continually sampled to generate noise

values.

2. Entropy Conditioner: The 16-bits of ring oscillator noise are fed into the entropy

conditioner, based on AES-256[1] CBC-MAC[2], which gathers multiple noise

samples over time to use in generating the entropy needed by the RNG design. To

create a seed value, 3 iterations are executed, each generating 128 bits of full entropy,

thus generating a 384-bit seed. The seed is then fed into the deterministic random bit

generator, AES-256 CTR_DRBG module.

3. Deterministic Random Bit Generator (DRBG): AMD RNG design includes a

deterministic random bit generator, based on AES-256 CTR_DRBG construct. It

uses the 384-bit seed value from the entropy conditioner and produces fast, high-

quality random values. The values are stored in a FIFO buffer to support fast read

bursts. Maximum of 2048 32-bit samples are generated per seed by the DRBG

module. It attempts to aggressively re-seed well before this limit is reached. The

DRBG module is compliant with NIST SP 800-90A standard [1] for random bit

generation.

Random Number Generator

AES-256
CTR_DRBG

AES-256
CBC-MAC

Random
Number

FIFO

Ring
Oscillator

Ring
Oscillator

Ring
Oscillator

RDSEED RDRAND

AMD SECURE RNG LIBRARY

The AMD hardware RNG design allows access to output registers that allow reading

the random values generated by the hardware. These registers are accessible to software

through x86 user-level instructions. The x86 instructions are:

1. RDRAND : Returns a 16-bit, 32-bit or 64-bit random value

2. RDSEED : Returns a 16-bit, 32-bit or 64-bit conditioned random value

Accessing the random values using these low-level instructions can be cumbersome

in high level applications. Also, most applications would need a stream of random numbers

which means multiple calls to RDRAND/RDSEED instructions.

AMD Secure RNG library provides an easy-to-use API library for accessing the

hardware generated random numbers. The use of library has several advantages

• Applications can just link to the library and invoke either a single or stream of

random numbers.

• It abstracts out low level programming for accessing RDRAND and RDSEED

instructions as well as handling some of the possible outcomes based on register

outputs.

• Library also manages checking for any hardware failure while generation and

allows user to specify retrial attempts

• The intuitive API interfaces enables more applications to use the library and thus

the underlying AMD RNG implementation.

The Secure RNG library exposes several APIs that makes use of the above

instructions to either return a single random value or a stream of them. The APIs and their

functionality is as described in the table below.

Feature API Description

Hardware
Support

int is_RDRAND_Supported() Check RDRAND instruction support

Parameters: None

Return type int: Indicates whether RDRAND
is supported or not. 1 – Success

int is_RDSEED_Supported() Check RDSEED instruction support

Parameters: None

Return type int: Indicates whether RDSEED is
supported or not. 1 – Success

RDRAND

int get_rdrand16u(

uint16_t *rng_val,

unsigned int retry_count)

Fetch a single 16-bit value by calling the
RDRAND instruction

Parameters:

rng_val - Pointer to memory to store the
value returned by RDRAND

retry_count - Number of retry attempts

Return type int: Success or failure status of
function call

int get_rdrand32u(

uint32_t *rng_val,

unsigned int retry_count)

Fetch a single 32-bit value by calling the
RDRAND instruction

Parameters:

rng_val - Pointer to memory to store the
value returned by RDRAND

retry_count - Number of retry attempts

Return type int: Success or failure status of
function call

int get_rdrand64u(

uint64_t *rng_val,

unsigned int retry_count)

Fetch a single 64-bit value by calling the
RDRAND instruction

Parameters:

rng_val - Pointer to memory to store the
value returned by RDRAND

retry_count - Number of retry attempts

Return type int: Success or failure status of
function call

int get_rdrand32u_arr(

uint32_t *rng_arr,

unsigned int N,

unsigned int retry_count)

Fetch an array of 32-bit values of size N by
calling the RDRAND instruction

Parameters:

rng_arr - Pointer to memory to store the
value returned by RDRAND

N - Number of random values to return

retry_count - Number of retry attempts

Return type int: Success or failure status of
function call

int get_rdrand64u_arr(

uint64_t *rng_arr,

unsigned int N,

unsigned int retry_count)

Fetch an array of 64-bit values of size N by
calling the RDRAND instruction

Parameters:

rng_arr - Pointer to memory to store the
value returned by RDRAND

N - Number of random values to return

retry_count - Number of retry attempts

Return type int: Success or failure status of
function call

int get_rdrand_bytes_arr(

unsigned char *rng_arr,

unsigned int N,

unsigned int retry_count)

Fetch an array of random bytes of a given
size by calling the RDRAND instruction

Parameters:

rng_arr - Pointer to memory to store the
random bytes

N - Number of random bytes to return

retry_count - Number of retry attempts

Return type int: Success or failure status of
function call

RDSEED

int get_rdseed16u(

uint16_t* rng_val,

unsigned int retry_count)

Fetch a single 16-bit value by calling the
RDSEED instruction

Parameters:

rng_val - Pointer to memory to store the
value returned by RDSEED

retry_count - Number of retry attempts

Return type int: Success or failure status of
function call

int get_rdseed32u(

uint32_t* rng_val,

unsigned int retry_count)

Fetch a single 32-bit value by calling the
RDSEED instruction

Parameters:

rng_val - Pointer to memory to store the
value returned by RDSEED

retry_count - Number of retry attempts

Return type int: Success or failure status of
function call

int get_rdseed64u(

uint64_t *rng_val,

unsigned int retry_count)

Fetch a single 64-bit value by calling the
RDSEED instruction

Parameters:

rng_val - Pointer to memory to store the
value returned by RDSEED

retry_count - Number of retry attempts

Return type int: Success or failure status of
function call

int get_rdseed32u_arr(

uint32_t *rng_arr,

unsigned int N,

unsigned int retry_count)

Returns an array of 32-bit values of size N by
calling the RDSEED instruction

Parameters:

rng_arr - Pointer to memory to store the
value returned by RDSEED

N - Number of random values to return

retry_count - Number of retry attempts

Return type int: Success or failure status of
function call

int get_rdseed64u_arr(

uint32_t *rng_arr,

unsigned int N,

unsigned int retry_count)

Fetch an array of 64-bit values of size N by
calling the RDSEED instruction

Parameters:

rng_arr - Pointer to memory to store the
value returned by RDSEED

N - Number of random values to return

retry_count - Number of retry attempts

Return type int: Success or failure status of
function call

int get_rdseed_bytes_arr(

unsigned char *rng_arr,

unsigned int N,

unsigned int retry_count)

Fetch an array of random bytes of a given
size by calling the RDSEED instruction

Parameters:

rng_arr - Pointer to memory to store the
random bytes

N - Number of random bytes to return

retry_count - Number of retry attempts

Return type int: Success or failure status of
function call

Table 1. AMD Secure RNG APIs

The APIs, is_RDRAND_supported and is_RDSEED_supported use CPUID

instruction to check support for RDRAND and RDSEED instructions respectively.

Applications should initially invoke these APIs to verify hardware support of Secure RNG.

Below code snippet shows sample usage of the library API to return an array of 1000 64-

bit random values using RDRAND

//Check for RDRAND instruction support

int ret = is_RDRAND_supported();

int N = 1000;

//If RDRAND supported

if (ret == SECRNG_SUPPORTED)

{

 uint64_t rng64;

 //Get 64-bit random number

 ret = get_rdrand64u(&rng64, 0);

 if (ret == SECRNG_SUCCESS)

 printf("RDRAND rng 64-bit value %lu\n\n", rng64);

 else

 printf("Failure in retrieving random value using

RDRAND!\n");

 //Get a range of 64-bit random values

 uint64_t*

rng64_arr = (uint64_t*) malloc(sizeof(uint64_t) * N);

 ret = get_rdrand64u_arr(rng64_arr, N, 0);

 if (ret == SECRNG_SUCCESS)

 printf("RDRAND for %u 64-bit random values

succeeded!\n", N);

 else

 printf("Failure in retrieving array of random values u

sing RDRAND!\n");

}

else

{

 printf("No support for RDRAND!\n");

}

APPLICATIONS

Applications relying on random numbers are innumerable. Many high performance

computing (HPC) applications including Monte Carlo simulations, communication

protocols and gaming applications depend on random numbers. One of the ubiquitous use

of unpredictable random numbers is in Cryptography. It underlies the security mechanism

of modern communication systems such as authentication, e-commerce, etc.

The key applications of random number generators in the field of cryptography and internet

security are,

• Key generation operations of Cryptography

• Authentication protocols

• Internet Gambling

• Encryption

• Seeding software based pseudo-random number generators (PRNG)

AMD’s latest microprocessor architecture, codenamed “Zen”, has a strong focus on

the cryptography domain with dedicated hardware block, Cryptographic co-processor in

the AMD Secure Processor. AMD Secure RNG library provides a suite of APIs which

developers can easily make use of in their applications.

SECURE RNG PERFORMANCE

Each invocation of RDRAND and RDSEED instruction reads a value from

Cryptographic Co-processor block. The read operation, being an Memory-mapped

I/O(MMIO)[4] access, is relatively slow compared to other software based PRNGs.

However, in cryptography applications which are not very latency sensitive, this may not

be much of an issue. In specific cases, where they are latency sensitive, one

recommendation is to use a hybrid approach, where a PRNG implementation can be seeded

using a value from the hardware generated random value/seed. This would serve the

purpose of adding certain degree of security as well as better performance.

CONCLUSION

Hardware based random number generators provide more secure and robust random

values than software implemented generators. AMD Family 17h processor platform

includes Random Number Generator design in its CCP 5.0 hardware. The software access

to these modules is quite low-level with MMIO and x86 instructions. The AMD Secure

RNG library abstracts most of the low level instruction calls and provides an easy to use

API interface. Applications such as cryptography key generation and many others can

benefit from the library and get access to high quality random numbers.

REFERENCES

[1] Recommendation for Random Number Generation Using Deterministic Random Bit

Generators http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

90Ar1.pdf.

[2] CBC-MAC https://en.wikipedia.org/wiki/CBC-MAC

[3] AMD Random Number Generator Whitepaper by David Kaplan, AMD

http://support.amd.com/TechDocs/amd-random-number-generator.pdf

[4] Memory-mapped I/O https://en.wikipedia.org/wiki/Memory-mapped_I/O

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://en.wikipedia.org/wiki/CBC-MAC
http://support.amd.com/TechDocs/amd-random-number-generator.pdf
https://en.wikipedia.org/wiki/Memory-mapped_I/O

DISCLAIMER
The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has
been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is
under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including
the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of
AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual
property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in
a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this
publication are for identification purposes only and may be trademarks of their respective companies.

© 2017-19 Advanced Micro Devices, Inc. All rights reserved.

