
FIPS 186-5 

FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION 
(Supersedes FIPS 186-4) 

Digital Signature Standard (DSS) 

CATEGORY:  COMPUTER SECURITY SUBCATEGORY:  CRYPTOGRAPHY 

Information Technology Laboratory 
National Institute of Standards and Technology 
Gaithersburg, MD  20899-8900 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.FIPS.186-5 

Published: February 3, 2023 

U.S. Department of Commerce 
Gina M. Raimondo, Secretary 

National Institute of Standards and Technology 
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology 

https://doi.org/10.6028/NIST.FIPS.186-5
https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.FIPS.186-5


   
 

   
 

FOREWORD 

The Federal Information Processing Standards Publication (FIPS) series of the National Institute of 
Standards and Technology (NIST) is the official series of publications relating to standards and 
guidelines developed under 15 U.S.C. 278g-3, and issued by the Secretary of Commerce under 40 
U.S.C. 11331.  

Comments concerning FIPS publications are welcomed and should be addressed to the Director, 
Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau 
Drive, Stop 8900, Gaithersburg, MD 20899-8900.  

 Charles H. Romine, Director 
 Information Technology Laboratory 

 
  



 

 

Abstract 

This standard specifies a suite of algorithms that can be used to generate a digital signature. 
Digital signatures are used to detect unauthorized modifications to data and to authenticate the 
identity of the signatory. In addition, the recipient of signed data can use a digital signature as 
evidence in demonstrating to a third party that the signature was, in fact, generated by the 
claimed signatory. This is known as non-repudiation since the signatory cannot easily repudiate 
the signature at a later time. 

 

Keywords: computer security; cryptography; digital signatures; Federal Information Processing 
Standards; public key cryptography.



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

i 

Federal Information Processing Standards Publication 186-5 
 

Published: February 3, 2023 
Effective: February 3, 2023 (see the Implementation Schedule) 

 
Announcing the 

DIGITAL SIGNATURE STANDARD (DSS) 

Federal Information Processing Standards Publications (FIPS) are developed by the National 
Institute of Standards and Technology (NIST) under 15 U.S.C. 278g-3, and issued by the Secretary 
of Commerce under 40 U.S.C. 11331. 
1. Name of Standard: Digital Signature Standard (DSS) (FIPS 186-5). 
2. Category of Standard: Computer Security. Subcategory. Cryptography. 
3. Explanation: This standard specifies algorithms for applications requiring a digital signature 
rather than a written signature. A digital signature is represented in a computer as a string of bits 
and computed using a set of rules and parameters that allow the identity of the signatory and the 
integrity of the data to be verified. Digital signatures may be generated on both stored and 
transmitted data. 
Signature generation uses a private key to generate a digital signature; signature verification uses 
a public key that corresponds to but is not the same as the private key. Each signatory possesses a 
private and public key pair. Public keys may be known by the public; private keys must be kept 
secret. Anyone can verify the signature by employing the signatory’s public key. Only the user 
that possesses the private key can perform signature generation. 
A hash function is often used in the signature generation process to obtain a condensed version of 
the data to be signed; the condensed version of the data is often called a message digest. The 
message digest is input to the digital signature algorithm to generate the digital signature. The hash 
functions to be used are specified in FIPS 180, Secure Hash Standard (SHS), and FIPS 202, SHA-
3: Permutation-Based Hash and Extendable-Output Functions. FIPS-approved digital signature 
algorithms shall be used with appropriate approved functions (e.g., hash functions such as those 
specified in FIPS 180 or FIPS 202). 
The digital signature is provided to the intended verifier along with the signed data. The verifying 
entity verifies the signature by using the claimed signatory’s public key and the same hash function 
that was used to generate the signature. Similar procedures may be used to generate and verify 
signatures for both stored and transmitted data. 
This standard supersedes FIPS 186-4. In the future, additional digital signature schemes may be 
specified and approved in FIPS publications or in NIST Special Publications. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

ii 

4. Approving Authority: Secretary of Commerce. 
5. Maintenance Agency: Department of Commerce, National Institute of Standards and 
Technology, Information Technology Laboratory, Computer Security Division. 
6. Applicability: This standard is applicable to all federal departments and agencies for the 
protection of sensitive unclassified information that is not subject to section 2315 of Title 10, 
United States Code, or section 3502 (2) of Title 44, United States Code. This standard shall be 
used in designing and implementing public key-based signature systems that federal departments 
and agencies operate or that are operated for them under contract. The adoption and use of this 
standard are available to private and commercial organizations. 
7. Applications: A digital signature algorithm allows an entity to authenticate the integrity of 
signed data and the identity of the signatory. The recipient of a signed message can use a digital 
signature as evidence in demonstrating to a third party that the signature was, in fact, generated by 
the claimed signatory. This is known as non-repudiation since the signatory cannot easily repudiate 
the signature at a later time. A digital signature algorithm is intended for use in electronic mail, 
electronic funds transfer, electronic data interchange, software distribution, data storage, and other 
applications that require data integrity assurance and data origin authentication.  
8. Implementations: A digital signature algorithm may be implemented in software, firmware, 
hardware, or any combination thereof. NIST has developed a validation program to test 
implementations for conformance to the algorithms in this standard. Information about the 
validation program is available at https://csrc.nist.gov/projects/cmvp. Examples for each digital 
signature algorithm are available at https://csrc.nist.gov/projects/cryptographic-standards-and-
guidelines/example-values. 
Agencies are advised that digital signature key pairs shall not be used for other purposes. 
9. Other Approved Security Functions: Digital signature implementations that comply with 
this standard shall employ cryptographic algorithms, cryptographic key generation algorithms, and 
key establishment techniques that have been approved for protecting Federal Government-
sensitive information. Approved cryptographic algorithms and techniques include those that are 
either: 

a. Specified in a Federal Information Processing Standards Publication (FIPS), 
b. Adopted in a FIPS or NIST recommendation, or 
c. Specified in the list of approved security functions for FIPS 140-3. 

10. Export Control: Certain cryptographic devices and technical data regarding them are subject 
to federal export controls. Exports of cryptographic modules implementing this standard and 
technical data regarding them must comply with these federal regulations and be licensed by the 
Bureau of Industry and Security of the U.S. Department of Commerce. Information about export 
regulations is available at: https://www.bis.doc.gov.  
11. Patents: The algorithms in this standard may be covered by U.S. or foreign patents. 

https://csrc.nist.gov/projects/cmvp
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://www.bis.doc.gov/


FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

iii 

12. Implementation Schedule: This standard becomes effective immediately upon final 
publication. To facilitate a transition to FIPS 186-5, FIPS 186-4 remains in effect for a period of 
one year following the publication of this standard, after which FIPS 186-4 will be withdrawn. 
During this period, agencies may elect to use cryptographic modules and practices that conform to 
this standard, or may elect to continue to use FIPS 186-4.  The implementation schedule for 
cryptographic modules undergoing validation through the Cryptographic Module Validation 
Program will be posted on NIST’s webpage at https://csrc.nist.gov/projects/cmvp under Notices.   
13. Specifications: Federal Information Processing Standard (FIPS) 186-5 Digital Signature 
Standard (affixed). 
14. Qualifications: The security of a digital signature system is dependent on maintaining the 
secrecy of the signatory’s private keys. Signatories shall, therefore, guard against the disclosure 
of their private keys. While it is the intent of this standard to specify general security requirements 
for generating digital signatures, conformance to this standard does not ensure that a particular 
implementation is secure. It is the responsibility of an implementer to ensure that any module that 
implements a digital signature capability is designed and built in a secure manner. 
Similarly, the use of a product containing an implementation that conforms to this standard does 
not guarantee the security of the overall system in which the product is used. The responsible 
authority in each agency or department shall ensure that an overall implementation provides an 
acceptable level of security.   
Since a standard of this nature must be flexible enough to adapt to advancements and innovations 
in science and technology, this standard will be reviewed every five years in order to assess its 
adequacy. 
15. Waiver Procedure: The Federal Information Security Management Act (FISMA) does not 
allow for waivers to Federal Information Processing Standards (FIPS) that are made mandatory by 
the Secretary of Commerce. 
16. Where to Obtain Copies of the Standard: This publication is available by accessing 
https://csrc.nist.gov/publications. Other computer security publications are available at the same 
website. 
17. How to Cite this Publication: NIST has assigned NIST FIPS 186-5 as the publication 
identifier for this FIPS, per the NIST Technical Series Publication Identifier Syntax. NIST 
recommends that it be cited as follows:  

National Institute of Standards and Technology (2023) Digital Signature Standard (DSS). 
(Department of Commerce, Washington, D.C.), Federal Information Processing Standards 
Publication (FIPS) NIST FIPS 186-5. https://doi.org/10.6028/NIST.FIPS.186-5  

18. Inquiries and comments: Inquiries and comments about this FIPS may be submitted to 
fips186-comments@nist.gov. 
  

https://csrc.nist.gov/projects/cmvp
https://csrc.nist.gov/publications
https://www.nist.gov/document/publication-identifier-syntax-nist-technical-series-publications
https://doi.org/10.6028/NIST.FIPS.186-5
mailto:fips186-comments@nist.gov


FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

iv 

Federal Information Processing Standards Publication 186-5 
 

Specifications for the 
DIGITAL SIGNATURE STANDARD (DSS) 

 

Table of Contents 
1. INTRODUCTION .................................................................................................................................... 1 

2. GLOSSARY OF TERMS, ACRONYMS, AND MATHEMATICAL SYMBOLS ...................................... 2 

2.1 TERMS AND DEFINITIONS ................................................................................................................. 2 

2.2 ACRONYMS ..................................................................................................................................... 5 

2.3 MATHEMATICAL SYMBOLS................................................................................................................ 6 

3. GENERAL DISCUSSION ....................................................................................................................... 9 

3.1 INITIAL SETUP ............................................................................................................................... 11 

3.2 DIGITAL SIGNATURE GENERATION .................................................................................................. 12 

3.3 DIGITAL SIGNATURE VERIFICATION AND VALIDATION ....................................................................... 13 

4 THE DIGITAL SIGNATURE ALGORITHM (DSA) ............................................................................... 16 

5. THE RSA DIGITAL SIGNATURE ALGORITHM ................................................................................. 16 

5.1 RSA KEY PAIR GENERATION ......................................................................................................... 16 

5.2 RSA KEY PAIR MANAGEMENT ....................................................................................................... 17 

5.3 ASSURANCES ................................................................................................................................ 18 

5.4  PKCS #1 ..................................................................................................................................... 18 

5.4.1 Mask Generation Functions in RSASSA-PSS ............................................................... 19 

6.  THE ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM (ECDSA) ............................................ 20 

6.1 ECDSA DOMAIN PARAMETERS ..................................................................................................... 20 

6.1.1 Domain Parameter Generation ...................................................................................... 20 

6.1.2 Domain Parameter Management................................................................................... 21 

6.2 PRIVATE/PUBLIC KEYS .................................................................................................................. 22 

6.2.1 Key Pair Generation ...................................................................................................... 22 

6.2.2 Key Pair Management ................................................................................................... 22 

6.3 ECDSA PER-MESSAGE SECRET NUMBER GENERATION ................................................................. 22 

6.3.1 Generation of Per-Message Secret Number for ECDSA .............................................. 22 

6.3.2 Generation of the Per-Message Secret Number for Deterministic ECDSA .................. 23 

6.4 ECDSA DIGITAL SIGNATURE GENERATION AND VERIFICATION ........................................................ 23 

6.4.1 ECDSA Signature Generation Algorithm ....................................................................... 24 

6.4.2 ECDSA Signature Verification Algorithm ....................................................................... 25 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

v 

6.5 ASSURANCES ................................................................................................................................ 25 

7. THE EDWARDS-CURVE DIGITAL SIGNATURE ALGORITHM (EDDSA) ........................................ 26 

7.1  EDDSA PARAMETERS ................................................................................................................... 26 

7.2  ENCODING .................................................................................................................................... 26 

7.3  DECODING .................................................................................................................................... 27 

7.4 EDDSA KEY PAIR GENERATION..................................................................................................... 27 

7.5 KEY PAIR MANAGEMENT ................................................................................................................ 28 

7.6 EDDSA SIGNATURE GENERATION ................................................................................................. 28 

7.7 EDDSA SIGNATURE VERIFICATION ................................................................................................ 29 

7.8 THE PREHASH EDWARDS-CURVE DIGITAL SIGNATURE ALGORITHM (HASHEDDSA).......................... 29 

7.8.1 HashEdDSA Signature Generation ............................................................................... 30 

7.8.2 HashEdDSA Signature Verification ............................................................................... 31 

7.8.3  Differences between EdDSA and HashEdDSA ............................................................. 31 

APPENDIX A: KEY PAIR GENERATION .................................................................................................. 33 

A.1 IFC KEY PAIR GENERATION ........................................................................................................... 33 

A.1.1 Criteria for IFC Key Pairs ............................................................................................... 33 

A.1.2 Generation of Random Primes that are Provably Prime ............................................... 35 

A.1.3 Generation of Random Primes that are Probably Prime ............................................... 37 

A.1.4 Generation of Provable Primes with Conditions Based on Auxiliary Provable Primes . 38 

A.1.5 Generation of Probable Primes with Conditions Based on Auxiliary Provable Primes . 40 

A.1.6 Generation of Probable Primes with Conditions Based on Auxiliary Probable Primes . 42 

A.2 ECC KEY PAIR GENERATION ......................................................................................................... 43 

A.2.1 ECDSA Key Pair Generation using Extra Random Bits ................................................ 44 

A.2.2 ECDSA Key Pair Generation by Rejection Sampling .................................................... 45 

A.2.3 EdDSA Key Pair Generation .......................................................................................... 46 

A.3 ECDSA PER-MESSAGE SECRET NUMBER GENERATION ................................................................. 47 

A.3.1 Per-Message Secret Number Generation Using Extra Random Bits ............................ 47 

A.3.2 Per-Message Secret Number Generation of Private Keys by Rejection Sampling ....... 48 

A.3.3  Per-Message Secret Number Generation for Deterministic ECDSA ............................ 49 

A.4 RANDOM VALUES MOD N................................................................................................................ 50 

A.4.1 Conversion of a Bit String to an Integer mod n via Modular Reduction ......................... 51 

A.4.2 Conversion of a Bit String to an Integer mod n via the Discard Method........................ 51 

APPENDIX B: GENERATION OF OTHER QUANTITIES ......................................................................... 53 

B.1 COMPUTATION OF THE INVERSE VALUE .......................................................................................... 53 

B.2 CONVERSION BETWEEN BIT STRINGS, INTEGERS, AND OCTET STRINGS ........................................... 54 

B.2.1 Conversion of a Bit String to an Integer ......................................................................... 54 

B.2.2 Conversion of an Integer to a Bit String ......................................................................... 54 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

vi 

B.2.3  Conversion of an Integer to an Octet String ................................................................. 55 

B.2.4  Conversion of a Bit String to an Octet String ................................................................ 55 

B.3 PROBABILISTIC PRIMALITY TESTS ................................................................................................... 56 

B.3.1 Miller-Rabin Probabilistic Primality Test ........................................................................ 57 

B.3.2 Enhanced Miller-Rabin Probabilistic Primality Test ....................................................... 58 

B.3.3 (General) Lucas Probabilistic Primality Test .................................................................. 59 

B.4 CHECKING FOR A PERFECT SQUARE .............................................................................................. 60 

B.5 JACOBI SYMBOL ALGORITHM ......................................................................................................... 61 

B.6 SHAWE-TAYLOR RANDOM_PRIME ROUTINE.................................................................................... 63 

B.7 TRIAL DIVISION ............................................................................................................................. 65 

B.8 SIEVE PROCEDURE ....................................................................................................................... 65 

B.9 COMPUTE A PROBABLE PRIME FACTOR BASED ON AUXILIARY PRIMES ............................................. 66 

B.10 CONSTRUCT A PROVABLE PRIME (POSSIBLY WITH CONDITIONS) BASED ON CONTEMPORANEOUSLY 
CONSTRUCTED AUXILIARY PROVABLE PRIMES................................................................................ 68 

APPENDIX C: CALCULATING THE REQUIRED NUMBER OF ROUNDS OF TESTING USING THE 
MILLER-RABIN PROBABILISTIC PRIMALITY TEST ........................................................................ 72 

C.1  THE REQUIRED NUMBER OF ROUNDS OF THE MILLER-RABIN PRIMALITY TESTS ................................ 72 

C.2  GENERATING PRIMES FOR RSA SIGNATURES ................................................................................ 73 

APPENDIX D: REFERENCES ................................................................................................................... 74 

APPENDIX E: REVISIONS (INFORMATIVE) ............................................................................................ 77 

 
List of Figures 

FIGURE 1: DIGITAL SIGNATURE PROCESSES ..................................................................................................... 9 
FIGURE 2: INITIAL SETUP BY AN INTENDED SIGNATORY .................................................................................... 11 
FIGURE 3: DIGITAL SIGNATURE GENERATION .................................................................................................. 13 
FIGURE 4: DIGITAL SIGNATURE VERIFICATION AND VALIDATION ....................................................................... 15 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

1 

1. Introduction 
This standard defines methods for digital signature generation that can be used for the protection 
of binary data (commonly called a message) and for the verification and validation of those 
digital signatures. Three techniques are approved. 

(1) The RSA digital signature algorithm is specified in the Internet Engineering Task Force 
Request for Comments (IETF RFC) 8017 [1] and was previously specified in Public Key 
Cryptography Standard (PKCS) #1 [2]. FIPS 186-5 approves the use of implementations 
of either or both of these standards and specifies key pair generation, as well as additional 
requirements. 

(2) The Elliptic Curve Digital Signature Algorithm (ECDSA) is specified in this standard. 
ECDSA was originally specified in American National Standards (ANS) X9.62 [3] 
(withdrawn). A variant of ECDSA with a deterministic signature generation procedure 
known as deterministic ECDSA is also approved and specified in IETF RFC 6979 [4]. 
Recommended elliptic curves for Federal Government use of ECDSA (including 
deterministic ECDSA) are provided in NIST Special Publication (SP) 800-186 [5]. 

(3) The Edwards Curve Digital Signature Algorithm (EdDSA) is specified in IETF RFC 
8032 [6]. FIPS 186-5 approves the use of EdDSA and specifies additional requirements. 
Recommended elliptic curves for Federal Government use of EdDSA are provided in SP 
800-186 [5]. Also included is HashEdDSA, a version of EdDSA where the EdDSA 
signature is generated on the hash of the message rather than the message itself. 

The Digital Signature Algorithm (DSA) is no longer specified in this standard and may only be 
used to verify previously generated digital signatures. Complete specifications may be found in 
Federal Information Processing Standard (FIPS) 186-4 [7].   
 
This standard includes requirements for obtaining the assurances necessary for valid digital 
signatures. Methods for obtaining these assurances are provided in SP 800-89, Recommendation 
for Obtaining Assurances for Digital Signature Applications [8]. Information about the key 
lengths used for generating and verifying digital signatures and the time frames during which 
they are assumed to be secure are provided in SP 800-131A [9]. Note that the algorithms in this 
standard are not expected to provide resistance to attacks from a large-scale quantum computer. 
Digital signature algorithms that will provide security from quantum computers will be specified 
in future NIST publications. 
 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

2 

2. Glossary of Terms, Acronyms, and Mathematical Symbols 

2.1 Terms and Definitions 
 

Approved FIPS-approved and/or NIST-recommended. An algorithm or 
technique that is either 1) specified in a FIPS or NIST 
Recommendation, 2) adopted in a FIPS or NIST Recommendation, 
or 3) specified in a list of NIST-approved security functions. 

Assurance of domain 
parameter validity 

Confidence that the domain parameters are arithmetically correct. 

Assurance of 
possession 

Confidence that an entity possesses a private key and any associated 
keying material. 

Assurance of public 
key validity 

Confidence that the public key is arithmetically correct. 

Bias With respect to the uniform distribution on [0, n–1], the bias is 
defined to be the maximum value of �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑆𝑆) − �|𝑆𝑆|

𝑛𝑛
�� taken 

over all subsets S of [0, n–1]. This measures the maximum 
advantage that an adversary has in predicting any event. 

Bit string An ordered sequence of zeros and ones. The leftmost bit is the most 
significant bit of the string. The rightmost bit is the least significant 
bit of the string. 

Certificate A set of data that uniquely identifies a public key (which has a 
corresponding private key) and an owner that is authorized to use 
the key pair. The certificate contains the owner’s public key and 
possibly other information and is digitally signed by a Certification 
Authority (i.e., a trusted party), thereby binding the public key to the 
owner.  

Certification Authority 
(CA) 

The entity in a Public Key Infrastructure (PKI) that is responsible 
for issuing certificates and exacting compliance with a PKI policy. 

Claimed signatory From the verifier’s perspective, the claimed signatory is the entity 
that purportedly generated a digital signature.  

Destroy An action applied to a key or a piece of secret data. After a key or a 
piece of secret data is destroyed, no information about its value can 
be recovered. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

3 

Digital signature The result of a cryptographic transformation of data that, when 
properly implemented, provides a mechanism for verifying origin 
authentication, data integrity, and signatory non-repudiation. 

Domain parameter 
seed  

A string of bits that is used as input for a domain parameter 
generation or validation process.  

Domain parameters Parameters used with cryptographic algorithms that are usually 
common to a domain of users. An ECDSA or EdDSA cryptographic 
key pair is associated with a specific set of domain parameters. 

Entity An individual (person), organization, device, or process. Used 
interchangeably with “party.” 

Equivalent process Two processes are equivalent if the same output is produced when 
the same values are input to each process (either as input parameters, 
as values made available during the process, or both). 

Hash function A function on bit strings in which the length of the output is fixed. 
Approved hash functions (such as those specified in FIPS 180 [10] 
and FIPS 202 [11]) are designed to satisfy the following properties: 

1. (One-way) It is computationally infeasible to find any input 
that maps to any new pre-specified output 

2. (Collision-resistant) It is computationally infeasible to find any 
two distinct inputs that map to the same output. 

Hash value See “message digest.” 

Intended signatory An entity that intends to generate digital signatures in the future.  

Key A parameter used in conjunction with a cryptographic algorithm that 
determines its operation. Examples applicable to this standard 
include: 

1.  The computation of a digital signature from data, and 
2.  The verification of a digital signature. 

Key pair A public key and its corresponding private key. 

Message The data that is signed. Also known as “signed data” during the 
signature verification and validation process. 

Message digest The result of applying a hash function to a message. Also known as 
a “hash value.” 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

4 

Non-repudiation A service that is used to provide assurance of the integrity and origin 
of data in such a way that the integrity and origin can be verified and 
validated by a third party as having originated from a specific entity 
in possession of the private key (i.e., the signatory). 

Owner A key pair owner is the entity authorized to use the private key of a 
key pair.  

Party An individual (person), organization, device, or process. Used 
interchangeably with “entity.” 

Per-message secret 
number 

A secret random number that is generated prior to the generation of 
each digital signature.  

Public Key 
Infrastructure (PKI) 

A framework that is established to issue, maintain, and revoke 
public key certificates. 

Prime number 
generation seed 

A string of random bits that is used to begin a search for a prime 
number with the required characteristics.  

Private key A cryptographic key that is used with an asymmetric (public key) 
cryptographic algorithm. The private key is uniquely associated with 
the owner and is not made public. The private key is used to 
compute a digital signature that may be verified using the 
corresponding public key.  

Probable prime An integer that is believed to be prime based on a probabilistic 
primality test. There should be no more than a negligible probability 
that the so-called probable prime is actually composite.   

Provable prime An integer that is either constructed to be prime or is demonstrated 
to be prime using a primality-proving algorithm. 

Pseudorandom A process or data produced by a process is said to be pseudorandom 
when the outcome is deterministic yet also effectively random as 
long as the internal action of the process is hidden from observation. 
For cryptographic purposes, “effectively random” means 
“computationally indistinguishable from random within the limits of 
the intended security strength.” 

Public key A cryptographic key that is used with an asymmetric (public key) 
cryptographic algorithm and is associated with a private key. The 
public key is associated with an owner and may be made public. In 
the case of digital signatures, the public key is used to verify a 
digital signature that was generated using the corresponding private 
key. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

5 

Security strength A number associated with the amount of work (i.e., the number of 
operations) that is required to break a cryptographic algorithm or 
system.  

Shall Used to indicate a requirement of this standard. 

Should Used to indicate a strong recommendation but not a requirement of 
this standard. Ignoring the recommendation could result in 
undesirable results. 

Signatory The entity that generates a digital signature on data using a private 
key. 

Signature generation The process of using a digital signature algorithm and a private key 
to generate a digital signature on data. 

Signature validation The (mathematical) verification of the digital signature and 
obtaining the appropriate assurances (e.g., public key validity, 
private key possession, etc.). 

Signature verification The process of using a digital signature algorithm and a public key 
to verify a digital signature on data. 

Signed data The data or message upon which a digital signature has been 
computed. Also see “message.” 

Subscriber An entity that has applied for and received a certificate from a 
Certificate Authority. 

Trusted third party 
(TTP) 

An entity other than the key pair owner and verifier that is trusted by 
the owner or the verifier or both. Sometimes shortened to “trusted 
party.” 

Verifier The entity that verifies the authenticity of a digital signature using 
the public key. 

  

2.2 Acronyms 
ANS American National Standard 
CA Certification Authority 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

6 

DRBG Deterministic Random Bit Generator1 
DSA Digital Signature Algorithm2 
ECDSA Elliptic Curve Digital Signature Algorithm  
EdDSA Edwards Curve Digital Signature Algorithm3 
FIPS 
FFC 

Federal Information Processing Standard 
Finite Field Cryptography 

NIST National Institute of Standards and Technology 
PKCS Public Key Cryptography Standard 
PKI Public Key Infrastructure 
RSA Rivest, Shamir, Adleman4 
SHA Secure Hash Algorithm 
SP NIST Special Publication 
TTP Trusted Third Party 
XOF Extendable-Output Function 

2.3 Mathematical Symbols 
a mod n The unique remainder r, 0 ≤ r ≤  (n – 1), when integer a is divided 

by the positive integer n. For example, 23 mod 7 = 2. 

b ≡ a mod n There exists an integer k such that b – a = kn; equivalently, a mod 
n = b mod n. 

d 1. For RSA, the private signature exponent of a private key. 
2. For ECDSA and EdDSA, the private key. 

e The public verification exponent of an RSA public key. 
G The base point of an elliptic curve. 
GCD(a, b) Greatest common divisor of the integers a and b. 
Hash(M) The result of a hash computation (message digest or hash value) on 

message M using an approved hash function. 
k A per-message secret number. 

 
1 Specified in SP 800-90A 
2 Specified in FIPS 186-4 
3 Specified in IETF RFC 8032 
4 Algorithm specified in PKCS #1 and IETF RFC 8017 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

7 

LCM(a, b) The least common multiple of the integers a and b. 
len(a) The length of the bit string that is the shortest possible binary 

representation of the (non-negative) integer a; i.e. the integer L, 
where 2𝐿𝐿−1 ≤ 𝑝𝑝 < 2𝐿𝐿. 

M The message that is signed using the digital signature algorithm.  
min(a, b) The minimum of the two positive integers a and b. 
n 1. For RSA, the modulus. The bit length of n, i.e. len(n), is 

considered to be the key size. 
2. For ECDSA or EdDSA, the order of the base point of the 

elliptic curve.  The bit length of n is considered to be the key 
size. 

(n, d) An RSA private key, where n is the modulus, and d is the private 
signature exponent. 

(n, e) An RSA public key, where n is the modulus, and e is the public 
verification exponent. 

p 1. For RSA, a prime factor of the modulus n. 
2. Size of the finite field GF(p) 

q For RSA, a prime factor of the modulus n. 
Q An ECDSA or EdDSA public key, which is a point on an elliptic 

curve. 
(r, s) or (R,S) An ECDSA, or EdDSA digital signature, where r and s (or R and 

S) are the digital signature components. 
SHA-x(M) The result when M is the input to the SHA-x hash function, where 

SHA-x is specified in FIPS 180 or FIPS 202.  
  
  

⊕ Bitwise logical “exclusive-or” on bit strings of the same length; for 
corresponding bits of each bit string, the result is determined as 
follows: 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, or 1 ⊕ 1 = 0.  

Example:    01101 ⊕ 11010 = 10111 
+ Addition 

× Multiplication 

/ Division 
a || b The concatenation of two strings a and b. Either a and b are both 

bit strings, or both are byte strings.  



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

8 

a The ceiling of a: the smallest integer that is greater than or equal to 
a. For example, 5 = 5, 5.3 = 6, and –2.1 = –2.  

a The floor of a; the largest integer that is less than or equal to a. For 
example, 5 = 5,  5.3 = 5, and –2.1 = −3. 

|a| The absolute value of a; |a| is – a if a < 0; otherwise, it is simply a. 
For example, |2| = 2, and |–2| = 2. 

[a, b] The interval of integers between and including a and b. For 
example, [1, 4] consists of the integers 1, 2, 3 and 4. 

{, a, b, …} Used to indicate optional information. 

0x The prefix to a bit string that is represented in hexadecimal characters. 
[n]X   The elliptic curve point X added to itself n times, for 𝑛𝑛 > 1. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

9 

3. General Discussion 
A digital signature is an electronic analog of a written signature that can be used to provide 
assurance that the claimed signatory signed the information. In addition, a digital signature may 
be used to detect whether or not the information was modified after it was signed (i.e., to detect 
the integrity of the signed data). These assurances may be obtained whether the data was 
received in a transmission or retrieved from storage. A properly implemented digital signature 
algorithm that meets the requirements of this standard can provide these services.  

 
Figure 1: Digital Signature Processes5 

A digital signature algorithm includes a signature generation process and a signature verification 
process. A signatory uses the generation process to generate a digital signature on data; a verifier 
uses the verification process to verify the authenticity of the signature. Each signatory has a 
public and private key and is the owner of that key pair. As shown in Figure 1, the private key is 
used in the signature generation process. The key pair owner is the only entity that is authorized 
to use the private key to generate digital signatures. In order to prevent other entities from 
claiming to be the key pair owner and using the private key to generate fraudulent signatures, the 
private key must remain secret. The approved digital signature algorithms are designed to 
prevent an adversary who does not know the signatory’s private key from generating a valid 
signature as the signatory on a different message. In other words, signatures are designed so that 

 
5 For EdDSA, the message/data is not hashed before being input into the signature generation and verification 
processes. 

 
 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

10 

they cannot be forged. A number of alternative terms are used in this standard to refer to the 
signatory or key pair owner. An entity that intends to generate digital signatures in the future 
may be referred to as the intended signatory. Prior to the verification of a signed message, the 
signatory is referred to as the claimed signatory until such time as adequate assurance can be 
obtained of the actual identity of the signatory.  
The public key is used in the signature verification process (see Figure 1). The public key need 
not be kept secret, but its integrity must be maintained. Anyone can verify a correctly signed 
message using message digest and the public key. 
For both the signature generation and verification processes of RSA, ECDSA, and HashEdDSA, 
the message (i.e., the signed data) is converted to a fixed-length representation of the message by 
means of an approved hash function. Both the original message and the digital signature are 
made available to a verifier.  
A verifier requires assurance that the public key is used to verify that a signature actually belongs 
to the entity that claims to have generated a digital signature (i.e., the claimed signatory). That is, 
a verifier requires assurance that the signatory is the actual owner of the public/private key pair 
used to generate and verify a digital signature. This assurance can only be provided if the 
owner’s identity and public key are bound together, such as in a certificate issued from a public 
key infrastructure. A verifier also requires assurance that the key pair owner actually possesses 
the private key associated with the public key and that the public key is a mathematically correct 
key. 
These assurances tell the verifier that if the digital signature can be correctly verified using the 
public key, the digital signature is valid (i.e., the key pair owner really signed the message). 
Digital signature validation includes both (mathematically) verifying the digital signature and 
obtaining the appropriate assurances. The following are reasons why such assurances are 
required:  

1. If a verifier does not obtain assurance that a signatory is the actual owner of the key pair 
whose public component is used to verify a signature, the problem of forging a signature 
is reduced to the problem of falsely claiming an identity. For example, anyone in 
possession of a mathematically consistent key pair can sign a message and claim that the 
signatory was the President of the United States.  

2. If the public key used to verify a signature is not mathematically valid, the arguments 
used to establish the cryptographic strength of the signature algorithm may not apply. The 
owner may not be the only party who can generate signatures that can be verified with 
that public key.   

3. If a public key infrastructure cannot provide assurance to a verifier that the owner of a 
key pair has demonstrated knowledge of a private key that corresponds to the owner’s 
public key, then it may be possible for an unscrupulous entity to have their identity (or an 
assumed identity) bound to a public key that is (or has been) used by another party. The 
unscrupulous entity may then claim to be the source of certain messages signed by that 
other party, or it may be possible that an unscrupulous entity has managed to obtain 
ownership of a public key that was chosen with the sole purpose of allowing for the 
verification of a signature on a specific message. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

11 

 
Figure 2: Initial Setup by an Intended Signatory 

 
Technically, a key pair used by a digital signature algorithm could also be used for purposes 
other than digital signatures (e.g., for key establishment). However, a key pair used for digital 
signature generation and verification as specified in this standard shall not be used for any other 
purpose. See SP 800-57, Part 1 [12], on key usage for further information. 
A number of steps are required to enable a digital signature generation or verification capability 
in accordance with this standard. All parties that generate digital signatures shall perform the 
initial setup process as discussed in Section 3.1. Digital signature generation shall be performed 
as discussed in Section 3.2. Digital signature verification and validation shall be performed as 
discussed in Section 3.3. 

3.1 Initial Setup 
Figure 2 depicts the steps that are performed prior to generating a digital signature by an entity 
intending to act as a signatory.   



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

12 

For the ECDSA and EdDSA algorithms (including HashEdDSA), the intended signatory shall 
first obtain appropriate domain parameters, either by generating the domain parameters itself or 
by obtaining domain parameters that another entity has generated. Having obtained the set of 
domain parameters, the intended signatory shall obtain assurance of the validity of those domain 
parameters; approved methods for obtaining this assurance are provided in SP 800-89 [8] (also 
see SP 800-186, Appendix D.1). Note that the RSA algorithm does not use domain parameters. 
Each intended signatory shall obtain a digital signature key pair that is generated as specified for 
the appropriate digital signature algorithm, either by generating the key pair itself or by obtaining 
the key pair from a trusted party. The intended signatory is authorized to use the key pair and is 
the owner of that key pair. Note that if a trusted party generates the key pair, that party needs to 
be trusted not to masquerade as the owner, even though the trusted party knows the private key. 
After obtaining the key pair, the intended signatory (now the key pair owner) shall obtain (1) 
assurance of the validity of the public key and (2) assurance that they actually possess the 
associated private key. Approved methods for obtaining these assurances are provided in SP 
800-89. 
A digital signature verifier requires assurance of the identity of the signatory. Depending on the 
environment in which the digital signatures are generated and verified, the key pair owner (i.e., 
the intended signatory) may register the public key and establish proof of identity with a 
mutually trusted party. For example, a certification authority (CA) could sign credentials 
containing an owner’s public key and identity to form a certificate after being provided with 
proof of the owner’s identity. Systems for certifying credentials and distributing certificates are 
beyond the scope of this standard. Other means of establishing proof of identity (e.g., by 
providing identity credentials along with the public key directly to a prospective verifier) may be 
employed as long as system users and/or agents trusted to act on their behalf determine that those 
methods meet their security requirements. 

3.2 Digital Signature Generation 
For RSA, ECDSA, and HashEdDSA, prior to the generation of a digital signature, a message 
digest shall be generated on the information to be signed using an appropriate approved hash 
function.  
Depending on the digital signature algorithm to be used, additional information shall be 
obtained. For example, a random per-message secret number shall be obtained for ECDSA but is 
not required for EdDSA and RSA. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

13 

 
Figure 3: Digital Signature Generation 

Using the selected digital signature algorithm, the signature private key, the message or message 
digest, and any other information required by the digital signature process, a digital signature 
shall be generated in accordance with this standard. 
The signatory may optionally verify the digital signature using the signature verification process 
and the associated public key (see Section 3.3). This optional verification serves as a final check 
to detect otherwise undetected signature generation computation errors; this verification may be 
prudent when signing a high-value message, when multiple users are expected to verify the 
signature, or if the verifier will be verifying the signature at a much later time. 
Figure 3 depicts the steps that are performed by an intended signatory (i.e., the entity that 
generates a digital signature).  

3.3 Digital Signature Verification and Validation 
In order to verify a digital signature, the verifier shall obtain the public key of the claimed 
signatory, which is (usually) based on the claimed identity. If ECDSA or EdDSA (including 
HashEdDSA) have been used to generate the digital signature, the verifier shall also obtain the 
domain parameters. The public key and domain parameters may be obtained, for example, from 

Generate a Digital Signature 

Obtain Additional Information for 
the Digital Signature Process 

Digital Signature Generation Complete 

 EdDSA 

Generate a Message Digest 

Verify the Digital Signature Optional 

RSA, ECDSA, 

and HashEdDSA 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

14 

a certificate created by a trusted party (e.g., a CA) or directly from the claimed signatory. For 
RSA, ECDSA, and HashEdDSA, a message digest shall be generated on the data whose 
signature is to be verified (i.e., not on the received digital signature) using the same hash 
function that was used during the digital signature generation process. The received digital 
signature is verified in accordance with this standard using the appropriate digital signature 
algorithm, the domain parameters (if appropriate), the public key, and the message or newly 
computed message digest. If the verification process fails, no inference can be made as to 
whether the data is correct, only that – in using the specified public key and the specified 
signature format – the digital signature cannot be verified for that data. 
Before accepting the verified digital signature as valid, the verifier shall have (1) assurance of 
the signatory’s claimed identity, (2) assurance of the validity of the domain parameters (for  
ECDSA and EdDSA, including HashEdDSA), (3) assurance of the validity of the public key, and 
(4) assurance that the claimed signatory actually possessed the private key that was used to 
generate the digital signature at the time that the signature was generated. Methods for the 
verifier to obtain these assurances are provided in SP 800-89. Note that assurance of domain 
parameter validity may have been obtained during initial setup (see Section 3.1). 
Figure 4 depicts the digital signature verification and validation process that is performed by a 
verifier (e.g., the intended recipient of the signed data and associated digital signature). Note that 
the figure depicts a successful verification and validation process (i.e., no errors are detected). If 
the verification and assurance processes are successful, the digital signature shall be considered 
valid. However, if a verification or assurance process fails, the digital signature shall be 
considered invalid. An organization’s policy shall govern the action to be taken for an invalid 
digital signature. Such policies are outside of the scope of this standard. Guidance for 
determining the timeliness of digitally signed messages is addressed in SP 800-102, 
Recommendation for Digital Signature Timeliness [13]. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

15 

 
Figure 4: Digital Signature Verification and Validation6 

 

 
6 For EdDSA, the message/data is not hashed into a message digest before being input into the signature generation 
and verification processes.   

 

Obtain the Domain 
Parameters and Public Key

Get the Claimed 
Signatory’s Identifier

Get the Claimed 
Signatory’s Identifier

Generate a Message Digest

Verify the Digital Signature

Obtain Assurance of the Claimed 
Signatory’s Identity

Obtain Assurance of Domain 
Parameter Validity

Obtain Assurance of the Validity 
of the Owner’s Public Key

Obtain Assurance that the Owner 
Possesses the Private Key

Digital Signature Validation Complete

Actions Assurances



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

16 

4 The Digital Signature Algorithm (DSA) 
Prior versions of this standard specified the DSA. This standard no longer approves the DSA for 
digital signature generation. However, the DSA may be used to verify signatures generated prior 
to the implementation date of this standard. See FIPS 186-4 [7] for the specifications for the 
DSA.   

5. The RSA Digital Signature Algorithm 
The use of the RSA algorithm for digital signature generation and verification is specified in 
IETF RFC 8017, Public Key Cryptography Standard (PKCS) #1: RSA Cryptography 
Specifications Version 2.2 [2]. This standard imposes additional restrictions, which are 
enumerated below (see Section 5.4). 

5.1 RSA Key Pair Generation 
An RSA digital signature key pair consists of an RSA private key, which is used to compute a 
digital signature, and an RSA public key, which is used to verify a digital signature. An RSA 
digital signature key pair shall not be used for other purposes (e.g., key establishment). 
An RSA public key consists of a modulus n, which is the product of two positive prime integers 
p and q (i.e., n = pq) and a public key exponent e. Thus, the RSA public key is the pair of values 
(n, e) and is used to verify digital signatures. The size of an RSA key pair is commonly 
considered to be the length of the modulus n in bits (nlen).  
The corresponding RSA private key consists of the same modulus n and a private key exponent d 
that depends on n and the public key exponent e. Thus, the RSA private key is the pair of values 
(n, d) and is used to generate digital signatures. Note that an alternative method for representing 
(n, d) using the Chinese Remainder Theorem (CRT) is allowed (see Sections 6.2 and 6.3 of SP 
800-56B [14]). 
In order to provide security for the digital signature process, the two integers p and q and the 
private key exponent d shall be kept secret. Guidance on the protection of these values is 
provided in SP 800-57, Part 1. The modulus n and the public key exponent e may be made 
known to anyone. 
This standard specifies the use of a modulus whose bit length is an even integer and greater than 
or equal to 2048 bits. Furthermore, this standard specifies that p and q be of the same bit length – 
namely, half the bit length of n. The maximum security strength of RSA schemes associated with 
the bit length of the modulus is specified in NIST SP 800-57, Part 1 [12].  
Approved hash functions shall be used during the generation of key pairs and digital signatures. 
When used during the generation of an RSA key pair (as specified in this standard), the length in 
bits of the hash function output block shall meet or exceed the security strength associated with 
the bit length of the modulus n (see SP 800-57, Part 1). 
The security strength associated with the RSA digital signature process is no greater than the 
minimum of the security strength associated with the bit length of the modulus and the security 
strength of the hash function that is employed (see Table 3 in SP 800-57, Part 1). The 
(maximum) security strengths associated with certain RSA modulus lengths and approved hash 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

17 

functions used during the digital signature process are provided in SP 800-57, Part 1. Both the 
security strength of the hash function used for the digital signature and the security strength 
associated with the bit length of the modulus n shall meet or exceed the security strength 
required for the digital signature process.  
The security strength of the hash function used should be greater than or equal to the security 
strength of the modulus since, otherwise, the security strength of the digital signature process is 
reduced to a level no greater than that provided by the hash function.  
A CA should use a modulus whose length nlen is equal to or greater than the bit-length of every 
modulus used by its subscribers. For example, if the subscribers are using nlen = 2048, then the 
CA should use nlen ≥ 2048. SP 800-57, Parts 1 and 3 [12, 15], provide further information about 
comparable security strength guidance. 
Criteria for the generation of RSA key pairs are provided in Appendix A.1.1. 
When RSA parameters are randomly generated (i.e., the primes p and q and, optionally, the 
public key exponent e), they shall be generated using an approved random bit generator. The 
(pseudo) random bits produced by the random bit generator shall be used as seeds for generating 
RSA parameters. Prime number generation seeds shall be kept secret or destroyed when the 
modulus n is computed. If any prime number generation seed is retained (e.g., to regenerate the 
RSA modulus n or as evidence that the generated prime factors p and q were generated in 
compliance with this standard), then the seed shall be kept secret and shall be protected. The 
strength of this protection shall be (at least) equivalent to the protection required for the 
associated private key. 

5.2 RSA Key Pair Management 
Guidance on the protection of key pairs is provided in SP 800-57, Part 1. The secure use of 
digital signatures depends on the management of an entity’s digital signature key pair as follows:  

1. The private key shall be used only for signature generation, as specified in this standard, 
and shall be kept secret. The public key shall be used only for signature verification, as 
specified in this standard, and may be made public. 

2. An intended signatory shall have assurance of possession of the private key prior to or 
concurrently with using it to generate a digital signature (see Section 3.1). 

3. A private key shall be protected from unauthorized access, disclosure, and modification. 
4.  A public key shall be protected from unauthorized modification (including substitution). 

For example, public key certificates that are signed by a CA may provide such protection. 
5. A verifier shall be assured of a binding between the public key and the key pair owner 

(see Section 3). 
6. A verifier shall obtain public keys in a trusted manner (e.g., from a certificate signed by a 

CA that the entity trusts or directly from the intended or claimed signatory, provided that 
the entity is trusted by the verifier and can be authenticated as the source of the signed 
information that is to be verified).  

7. Verifiers shall be assured that the claimed signatory is the key pair owner and that the 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

18 

owner possessed the correct private key at the time the signature was generated (i.e., the 
private key that is associated with the public key used to verify the digital signature) (see 
Section 3.3). 

8. A signatory and a verifier shall have assurance of the validity of the public key (see 
Sections 3.1 and 3.3). 

5.3 Assurances 
The intended signatory shall have assurances as specified in Section 3.1. Prior to accepting a 
digital signature as valid, the verifier shall have assurances as specified in Section 3.3. 

5.4  PKCS #1 
IETF RFC 8017, PKCS #1: RSA Cryptography Specifications Version 2.2 [1], defines 
mechanisms for encrypting and signing data using the RSA algorithm. In particular, it specifies 
two digital signature processes and corresponding formats: RSASSA-PKCS1-v1.5 and 
RSASSA-PSS. Both of these signature schemes are approved for use, but additional constraints 
are imposed in addition to those specified in the IETF RFC. 

(a) Implementations that generate RSA key pairs shall use the criteria and methods in 
Appendix B.3 to generate those key pairs. 

(b)  For RSASSA-PSS, either an approved hash function or XOF (extendable-output 
function) shall be used as the function “Hash” in Sections 9.1.1 and 9.1.2 of RFC 8017. 
Approved XOFs are SHAKE128 and SHAKE256, which are specified in FIPS 202. 
When SHAKE128 or SHAKE256 is used as the function “Hash,” the output length shall 
be 256 or 512 bits, respectively.  

(c) For RSASSA-PKCS-v1.5, only approved hash functions shall be used.  
(d) Only two prime factors p and q shall be used to form the modulus n = pq. 

(e) The exponent e shall be an odd, positive integer such that 216 < 𝑒𝑒 < 2256. 
(f) Random numbers shall be generated using an approved random bit generator, as 

specified in SP 800-90A [16]. 

(g)  For RSASSA-PSS, the length (in bytes) of the salt (sLen) shall satisfy 0 ≤ sLen ≤ hLen, 
where hLen is the length of the hash function output block (in bytes). This inequality 
shall also be checked during the signature verification process, where hLen is determined 
by the expected (approved) hash function, and sLen is the actual byte length of the byte 
string following the leftmost (most significant) nonzero byte (which should be 0x01) in 
the recovered DB. 

(h) For RSASSA-PKCS-v1.5, when the hash value is recovered from the encoded message 
EM during the verification of the digital signature,7 the extraction of the ASN.1 value of 
the DigestInfo data structure shall be accomplished by either: 

 
7 PKCS #1, v2.2 (Section 8.2.2), provides two methods for comparing the DigestInfo values: 1) comparing the 
 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

19 

• Selecting the appropriate number of rightmost (least significant) bits of EM, as 
determined by the size of a PKCS #1-defined ASN.1 DER value corresponding to the 
expected hash function’s algorithm identifier and output length, regardless of the 
length of the padding,  
Or (if the DigestInfo is selected by its location with respect to the last byte of 
padding), 

• Checking that a byte string of the length expected for the ASN.1 DER value of 
DigestInfo fills the  remaining rightmost (least significant) bytes of EM (i.e., no other 
information follows the DigestInfo data structure in the encoded message). 

Only if the extracted DigestInfo has the appropriate form shall the signature verification process 
continue. Assuming that this is the case, the following two checks shall be performed:  
 

1. The algorithm identifier extracted from DigestInfo shall be examined to verify 
that the expected (approved) hash function has been identified.   

2. The length of the digest value that is extracted from DigestInfo shall be 
determined and verified to be equal to the length of hash values output by the 
expected hash function.   
 

Only upon successful verification of both the algorithm identifier and the length of the digest 
value shall the extracted digest value be used as the recovered hash value during the verification 
of the digital signature.   
 
Note that PKCS #1 was initially developed by RSA Laboratories in 1991 and has been revised as 
multiple versions. This standard references version 2.2 as published in IETF RFC 8017. 

5.4.1 Mask Generation Functions in RSASSA-PSS 
The mask generation function MGF1, to be used with RSASSA-PSS, is specified in Section 
B.2.1 of RFC 8017. This standard allows the use of SHAKE128 or SHAKE256 as alternative 
mask generation functions. The output length in bits of the alternative mask generation function 
is  8 × (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 − ℎ𝑒𝑒𝑒𝑒𝑛𝑛 − 1), where “emLen – hLen – 1” is the output length in bytes of the 
MGF. See RFC 8017 for the definitions of “emLen” and “hLen”. Concretely, in step 9 of Section 
9.1.1 of RFC 8017, instead of dbMask = MGF1(H, emLen – hLen - 1), set either dbMask = 
SHAKE128�𝐻𝐻, 8 × (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 − ℎ𝑒𝑒𝑒𝑒𝑛𝑛 − 1)� or 𝑑𝑑𝑝𝑝𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑 =  SHAKE256�𝐻𝐻, 8 × (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 −
ℎ𝑒𝑒𝑒𝑒𝑛𝑛 − 1)�. Similarly, for step 7 of Section 9.1.2, instead of dbMask = MGF1(H, emLen – hLen 
– 1), then dbMask = SHAKE128�𝐻𝐻, 8 × (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 − ℎ𝑒𝑒𝑒𝑒𝑛𝑛 − 1)� or 𝑑𝑑𝑝𝑝𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑 =
 SHAKE256�𝐻𝐻, 8 × (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 − ℎ𝑒𝑒𝑒𝑒𝑛𝑛 − 1)�.  

 
encoded messages EM and EM′ or 2) applying (a not specified) decoding operation. Step (h) above applies to the 
latter case.    



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

20 

6.  The Elliptic Curve Digital Signature Algorithm (ECDSA) 
This standard (FIPS 186-5) specifies (in Section 6.4) methods for digital signature generation 
and verification using the Elliptic Curve Digital Signature Algorithm (ECDSA). Specifications 
for the generation of the domain parameters used during the generation and verification of digital 
signatures are included in SP 800-186, Recommendations for Discrete Logarithm-Based 
Cryptography: Elliptic Curve Domain Parameters [5]. ECDSA is the elliptic curve analog of 
DSA. ECDSA keys shall not be used for any other purpose (e.g., key establishment). 
Deterministic ECDSA (Section 6.3.2) is a variant of ECDSA, where a per-message secret 
number is a function of the message that is signed, thereby resulting in a deterministic mapping 
of messages to signatures. This variant does not impact the signature verification process. IETF 
RFC 6979, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve 
Digital Signature Algorithm (ECDSA) [4], describes this deterministic digital signature 
generation procedure. The use of deterministic ECDSA may be desirable for devices that do not 
have a good source of quality random numbers.  
For signature schemes, secrecy of the private key is critical. This is especially true with 
deterministic signature schemes, which return a unique signature computed from the hash of the 
private key and the message. Care must be taken to protect implementations against attacks, such 
as side-channel attacks or fault attacks [17, 18, 19, 20, 21, 22]. A cryptographic device may leak 
critical information with side-channel analysis or attacks that allow internal data or keying 
material to be extracted without breaking the cryptographic primitives. It is also important to 
verify the correctness of group arithmetic computations for ECC implementations. These types 
of attacks may be of particular concern for hardware implementations of deterministic signature 
schemes, as well as embedded or IoT devices and smartcards.     

6.1 ECDSA Domain Parameters 
ECDSA and deterministic ECDSA require that the private/public key pairs used for digital 
signature generation and verification be generated with respect to a particular set of domain 
parameters. These domain parameters may be common to a group of users and may be public. 
Domain parameters may remain fixed for an extended time period. 
Domain parameters for ECDSA and deterministic ECDSA are of the form (q, FR, h, n, Type, a, 
b, G, {domain_parameter_seed}), where q is the field size, FR is an indication of the basis used, 
a and b are two field elements that define the equation of the curve, Type indicates the elliptic 
curve model used, G is a base point of prime order on the curve (i.e., G = (xG, yG)), n is the order 
of the point G, and h is the cofactor (which is equal to the order of the curve divided by n). The 
domain_parameter_seed is the domain parameter seed and is an optional bit string that is present 
if the elliptic curve was generated from the seed in a verifiable fashion.   

6.1.1 Domain Parameter Generation 
This standard specifies four ranges for the bit length of n (see Table 1).  



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

21 

Table 1: ECDSA Security Parameters 

Bit length of n 
( i.e. len(n) ) 

Comparable Security 
Strength 

224 - 255 approximately len(n)/2; 
at least 112 bits 

256 - 383 approximately len(n)/2; 
at least 128 bits 

384 - 511 approximately len(n)/2; 
at least 192 bits 

≥ 512 approximately len(n)/2; 
at least 256 bits 

 
ECDSA and deterministic ECDSA are defined for two arithmetic fields: the finite field GF(p) 
and the finite field GF(2𝑚𝑚). For the field GF(p), p is required to be an odd prime.  
NIST-recommended curves for ECDSA are provided in SP 800-186, Recommendations for 
Discrete Logarithm-Based Cryptography: Elliptic Curve Domain Parameters.  
It is recommended that the security strength associated with the bit length of n and the security 
strength of the hash function be the same unless an agreement has been made between 
participating entities to use a stronger hash function. A hash function that provides a lower 
security strength than is associated with the bit length of n shall not be used. If the length of the 
output of the hash function is greater than the bit length of n, then the leftmost len(n) bits of the 
hash function output block shall be used in any calculation using the hash function output during 
the generation or verification of a digital signature. 
Normally, a CA should use a bit length of n whose assessed security strength is equal to or 
greater than the assessed security strength associated with the bit length of n used by its 
subscribers. For example, if its subscribers are using 256-bit moduli (assessed to have a security 
strength of 128 bits), then a CA should use a modulus n whose bit length is equal to or greater 
than 256 bits (therefore having an assessed security strength equal to or greater than 128 bits). SP 
800-57, Parts 1 and 3 [12, 15], provide additional information about the comparable security 
strength guidance.  

6.1.2 Domain Parameter Management 
Each key pair shall be correctly associated with one specific set of domain parameters (e.g., by a 
public key certificate that identifies the domain parameters associated with the public key). The 
domain parameters shall be protected from unauthorized modification until the set is deactivated 
(if and when the set is no longer needed). The same domain parameters may be used for more 
than one purpose (e.g., the same domain parameters may be used for both digital signatures and 
key establishment). However, using different domain parameters reduces the risk that key pairs 
generated for one purpose could be accidentally used for another purpose.  



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

22 

6.2 Private/Public Keys 
An ECDSA or deterministic ECDSA key pair consists of a private key d and a public key Q, 
which are associated with a specific set of domain parameters (i.e., d, Q, and the domain 
parameters are mathematically related to each other). The private key is normally used for a 
period of time (i.e., the cryptoperiod); the public key may continue to be used as long as digital 
signatures that have been generated using the associated private key need to be verified (i.e., the 
public key may continue to be used beyond the cryptoperiod of the associated private key). See 
SP 800-57, Part 1, for further guidance. 
(Deterministic) ECDSA keys shall only be used for the generation and verification of 
(deterministic) ECDSA digital signatures.  

6.2.1 Key Pair Generation 
A digital signature key pair d and Q is generated for a set of domain parameters (q, FR, h, n, 
Type, a, b, G, {domain_parameter_seed}). Methods for the generation of d and Q are provided 
in Appendix A.2. 

6.2.2 Key Pair Management 
The secure use of digital signatures depends on the management of an entity’s digital signature 
key pair as specified in Section 5.2. Moreover, there are three additional requirements that 
pertain to ECDSA: 

1. The validity of the domain parameters shall be assured prior to the generation of the key 
pair or the verification and validation of a digital signature (see Section 3). 

2. Each key pair shall be associated with the domain parameters under which the key pair 
was generated.   

3. A key pair shall only be used to generate and verify signatures using the domain 
parameters associated with that key pair. 

6.3 ECDSA Per-Message Secret Number Generation 
A new secret random number k, 0 < 𝑑𝑑 < 𝑛𝑛, shall be generated prior to the generation of each 
digital signature for use during the signature generation process. This secret number shall be 
protected from unauthorized disclosure and modification. The secret number k may be generated 
either randomly (see Section 6.3.1) or in a deterministic way (see Section 6.3.2).  
The value k -1 = k -1 mod n is the multiplicative inverse of k with respect to multiplication modulo 
n (i.e., 0 < k -1 < n and 1 ≡ (k -1 k) mod n). This inverse is required for the signature generation 
process. A technique is provided in Appendix B.1 for deriving  k -1 mod n from k. 
For (non-deterministic) ECDSA, both k and k -1 may be pre-computed since knowledge of the 
message to be signed is not required for the computations. When k and k -1 are pre-computed, 
their confidentiality and integrity shall be protected in the same manner as the private key. 

6.3.1 Generation of Per-Message Secret Number for ECDSA 
Methods for randomly generating the per-message secret number are provided in Appendices 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

23 

A.3.1 and A.3.2.   

6.3.2 Generation of the Per-Message Secret Number for Deterministic ECDSA 
Deterministic ECDSA is a variant of ECDSA where the per-message secret number is a function 
of the message that is signed and the private key, thereby resulting in a deterministic mapping of 
messages to signatures. This protects against attacks arising from generating signatures with 
insufficient randomness in the per-message secret number that would reveal a private key. 
Deterministic ECDSA may be desirable for devices that do not have a good source of quality 
random numbers for generating the per-message secret number.   
 
The method for deterministically generating the per-messsage secret number is provided in 
Appendix A.3.3 

6.4 ECDSA Digital Signature Generation and Verification 
An ECDSA or deterministic ECDSA digital signature (r, s) shall be generated as specified in 
Section 6.4.1 using: 

1. Domain parameters that are generated in accordance with Section 6.1.1,  
2. A private key that is generated as specified in Section 6.2.1, 
3. A per-message secret number that is generated as specified in Section 6.3, 
4. An approved hash function or XOF (extendable-output function) as discussed below, 

and 
5. An approved random bit generator (not needed for deterministic  ECDSA). 

A digital signature shall be verified as specified in Section 6.4.2 using the same domain 
parameters and hash function that were used during signature generation. 
An approved hash function or an XOF shall be used during the generation of digital signatures. 
Approved XOFs are SHAKE128 and SHAKE256, which are specified in FIPS 202. When 
SHAKE128 or SHAKE256 is used as an XOF in Sections 6.4.1 and 6.4.2 below, its output 
length shall be 256 or 512 bits, respectively.  
The security strength associated with the ECDSA digital signature process is no greater than the 
minimum of the security strength associated with the bit length of n and the security strength of 
the hash function (or XOF) that is employed. Both the security strength of the hash function (or 
XOF) used and the security strength associated with the bit length of n shall meet or exceed the 
security strength required for the digital signature process. The security strengths for the ranges 
of the bit lengths of n and for each hash function are provided in Table 3 of SP 800-57, Part 1. 
The security strengths for collision resistance for XOFs is provided in FIPS 202. 
The security strength associated with the bit length of n and the security strength of the hash 
function (or XOF) should be the same unless an agreement has been made between participating 
entities to use a stronger hash function. When the length of the output of the hash function (or 
XOF) is greater than the bit length of n, then the leftmost n bits of the hash function (or XOF) 
output block shall be used in any calculation using the hash function (or XOF) output during the 
generation or verification of a digital signature. A hash function (or XOF) that provides a lower 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

24 

security strength than the security strength associated with the bit length of n ordinarily should 
not be used since this would reduce the security strength of the digital signature process to a 
level no greater than that provided by the hash function (or XOF). 

6.4.1 ECDSA Signature Generation Algorithm 
Inputs:   

1. Bit string M to be signed 
2. Private key d in the interval [1, n−1] and domain parameters D 
3. Approved hash function or XOF with output length of hashlen bits and a security design 

strength that is the same as or greater than the security strength of the key pair 

Output: A pair of integers (r, s), each in the interval [1, n−1] 
Process:  

1. Compute H = Hash(M) using the established hash function or XOF where the bit string H 
has hashlen bits. 

2. Derive the integer e from H as follows: 

a. If len(n) ≥ hashlen, set E = H. Otherwise, set E equal to the leftmost log2(n) bits of 
H.  

b. Convert the bit string E to the integer e as specified in Appendix B.2.1. 

3. Generate a per-message secret number k, 0 < 𝑑𝑑 < 𝑛𝑛, for domain parameters D following 
one of the procedures in Section 6.3.  

4. Compute k -1 mod n using the routine in Appendix B.1. 
5. Compute the elliptic curve point R = [k]G.  

6. Set 𝑥𝑥𝑅𝑅 to the x-coordinate of the affine representation of the point R = (𝑥𝑥𝑅𝑅 , 𝑝𝑝𝑅𝑅). 

7. Convert the field element 𝑥𝑥𝑅𝑅 to the integer 𝑝𝑝1, using the conversion routine in NIST SP 
800-186, Appendix F.1. 

8. Set r = 𝑝𝑝1 mod n. 

9. Compute s = 𝑑𝑑−1⋅ (e + r ⋅ d) mod n.  

10. Securely destroy k and 𝑑𝑑−1.  
11. If r = 0 or if s = 0, and k was generated deterministically (using the procedure in 6.3.2), 

then output failure. Otherwise, if r = 0 or if s = 0, then go to Step 3. 
12. Output (r, s).  

A value k shall be generated at each invocation of the signature generation algorithm. The 
private key d and the per-message secret numbers k and 𝑑𝑑−1 shall be protected from 
unauthorized disclosure and modification. The per-message secret numbers k and 𝑑𝑑−1 may be 
pre-computed if k is randomly generated. If these numbers are pre-computed, their 
confidentiality and integrity shall be protected in the same manner as the private key.   



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

25 

Note that in the case of deterministic ECDSA, if r = 0 or s = 0, then generating a new per-
message secret k will again lead to the same values for r and s. Statistically, this is extremely 
unlikely to happen. However, should it occur, the signature generation algorithm aborts and 
outputs failure. 

6.4.2 ECDSA Signature Verification Algorithm 
Inputs:  

1. Message M  
2. A pair of integers (r, s) 
3. Purported signature verification key Q and domain parameters D 

Output: Accept or reject the signature over M as originating from the owner of public key Q. 
Process:  
From Section 6.2.2, the validity of the domain parameters shall be assured prior to the 
verification and validation of a digital signature. The validity of the public key Q should also be 
checked (see Appendix D.1 of SP 800-186 [5]).  

1. Verify that both r and s are integers in the interval [1, n − 1]. Output “reject” if 
verification fails. 

2. Compute H = Hash(M) using the established hash function or XOF where the bit string H 
has hashlen bits. 

3. Derive the integer e from H as follows: 

a. If log2(𝑛𝑛) ≥ hashlen, set E = H. Otherwise, set E equal to the leftmost 
log2(𝑛𝑛) bits of H.  

a. Convert the bit string E to the integer e as specified in Appendix B.2.1. 

4. Compute s−1 mod n using the routine in Appendix B.1. 

5. Compute u = e ⋅ s -1 mod n and v = r ⋅ s -1 mod n. 
6. Compute R1 = [u]G + [v]Q. Output “reject” if R1 is the identity element (the point at 

infinity). 

7. Set xR to the x-coordinate of the affine representation of R1 = (𝑥𝑥𝑅𝑅 ,𝑝𝑝𝑅𝑅). 

8. Convert the field element 𝑥𝑥𝑅𝑅 to the integer 𝑝𝑝1, using the conversion routine in SP 800-
186, Appendix F.1. 

9. Verify that r = 𝑝𝑝1 mod n. Output “reject” if verification fails; output “accept” otherwise. 

6.5 Assurances 
The intended signatory shall have assurances as specified in Section 3.1. Prior to accepting a 
signature as valid, the verifier shall have assurances as specified in Section 3.3. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

26 

7. The Edwards-Curve Digital Signature Algorithm (EdDSA) 
The Edwards-curve Digital Signature Algorithm (EdDSA) is a digital signature scheme using a 
variant of a Schnorr signature based on twisted Edwards curves. See SP 800-186 for details on 
curves approved for use with EdDSA. 
Prehash EdDSA (HashEdDSA) is a version of EdDSA where the EdDSA signature is generated 
on the hash of the message rather than the message itself. Prehash EdDSA is described in Section 
7.8. 

7.1  EdDSA Parameters 
IETF RFC 8032 [6] describes the elliptic curve Edwards-curve Digital Signature Algorithm 
(EdDSA) and specifies parameters for the edwards25519 and edwards448 curves8. It also 
specifies the prehash version HashEdDSA. EdDSA signatures are deterministic; a unique value 
computed from the hash of the private key and the message is used in the signature generation 
process. This process protects against attacks arising from generating signatures with insufficient 
randomness for the per-message secret number.   
Care must be taken to protect implementations against attacks, such as side-channel attacks and 
fault attacks [17, 18, 19, 20, 21, 22]. A cryptographic device may leak critical information with 
side-channel analysis or attacks that allow internal data or keying material to be extracted 
without breaking the cryptographic primitives. It is also important to verify the correctness of 
group arithmetic computations for ECC implementations. These types of attacks are of particular 
concern for hardware implementations of deterministic signature schemes, as well as in 
embedded or IoT devices and smartcards.     
The security of the EdDSA signature scheme relies on the choices of domain parameters. The 
domain parameters for EdDSA include G as a base point of prime order on the curve (i.e., G = 
(𝑥𝑥𝐺𝐺 ,𝑝𝑝𝐺𝐺)), n as the order of the point G, d as the private key, Q as the public key, an integer b, 
and an integer c (c is 3 for Ed25519 and 2 for Ed448). Note that secret scalars for EdDSA are 
multiples of 2c. Additionally, H is a cryptographic hash function or XOF (extendable-output 
function) used during signature generation. H shall be one of the following, depending on which 
curve is used (per IETF RFC 8032):  

• For Ed25519, SHA-512 shall be used.   
• For Ed448, SHAKE256 (as specified in FIPS 202) shall be used. 

  
It is noted that Ed25519 is intended to provide approximately 128-bits of security, and Ed448 is 
intended to provide approximately 224-bits of security. Future Special Publications may allow 
other parameter sets or specify a randomized version of EdDSA. 

7.2  Encoding  
Parameter values used in EdDSA are coded as octet strings, and integers are coded using little-

 
8 In this document, some of the notation has been changed from RFC 8032 for consistency with ECDSA notation. 

 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

27 

endian convention (i.e., a 32-octet string h=h[0],...h[31] represents the integer h[0] + 28 × h[1] + 
... + 2248 × h[31]). The most significant byte is h[31], and the least significant byte h[0]. 

For a curve point (x,y) with coordinates in the range 0 ≤ x, y < p, first encode the y-coordinate as 
a little-endian string of 32 octets for Ed25519 or 57 octets for Ed448. For Ed25519, the most 
significant bit of the final octet is always zero, while for Ed448, the most significant octet is 
always zero. To form the encoding of the point, copy the least significant bit of the x-coordinate 
to the most significant bit of the final octet.  

7.3  Decoding 
For point decoding or “decompression,” square roots modulo p are needed. To decompress an 
encoded point for EdDSA:  

1. Interpret the octet string as an integer in little-endian representation. The most significant 
bit of this integer is the least significant bit of the x-coordinate, denoted as 𝑥𝑥0. The y-
coordinate is recovered simply by clearing this bit. If the resulting value is ≥ p, decoding 
fails. 

2. To recover the x-coordinate, the curve equation requires x2 = (y2 – 1) / (d y2 – a) mod p. 
The denominator is always non-zero mod p. Compute a square root to obtain x. Square 
roots can be computed using the Tonelli-Shanks algorithm (see NIST SP 800-186, 
Appendix E).   

The following routines describe simplified cases to compute square roots for p ≡ 3 mod 4 or p 
≡ 5 mod 8. Let u = y2 – 1 and v = d y2 – a.   

a) To find a square root of (u/v) if p ≡ 3 mod 4 (as in Ed448), first compute the candidate 
root w = (u/v) (p+1)/4 = u3 v (u5v3) (p-3)/4 mod p.  If v w2 = u, the square root is x = w. 
Otherwise, no square root exists for modulo p, and the decoding fails. 

b) To find a square root of (u/v) if p ≡ 5 mod 8 (as in Ed25519), first compute the 
candidate root w = (u/v) (p+3)/8 = u v3 (u v7) (p-5)/8 mod p. To find the root, check three 
cases: 
• If v w2 = u mod p, the square root is x = w. 
• If v w2 = –-u mod p, the square root is x = w × 2((p-1)/4). 
• Otherwise, no square root exists for modulo p, and decoding fails. 

For both cases, if x = 0 and x0 = 1, point decoding fails. If x mod 2 = x0, then the x-coordinate 
is x. Otherwise, the x-coordinate is p – x.   

 
3. Return the decoded point (x,y). 

7.4 EdDSA Key Pair Generation 
EdDSA public keys have exactly b bits, and EdDSA signatures have exactly 2b bits. The value b 
is a multiple of 8, therefore, public key and signature lengths are an integral number of octets. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

28 

For Ed25519, b is 256, so the private key is 32 octets. For Ed448, b is 456, and the private key is 
57 octets. See IETF RFC 8032. The method to generate the public-private key (d, Q) pair is 
provided in Appendix A.2.3. 

7.5 Key Pair Management 
The secure use of digital signatures depends on the management of an entity’s digital signature 
key pair. Key pair management requirements for EdDSA are the same as for ECDSA, which are 
provided in Section 6.2.2. 

7.6 EdDSA Signature Generation  
EdDSA signatures are deterministic. The signature is generated using the hash of the private key 
and the message using the procedure below or an equivalent process. 
 
Inputs: 
 

1. Bit string M to be signed 
2. Valid public-private key pair (d, Q) for domain parameters D 
3. H: SHA-512 for Ed25519 or SHAKE256 for Ed448   
4. For Ed448, a string context set by the signer and verifier with a maximum length of 255 

octets; by default, context is the empty string 
 
Output: The signature R || S, where R is an encoding of a point and S is an octet string of a given 

length of a little-endian encoded value. 
 
Process: 
 
As specified in IETF RFC 8032, the EdDSA signature of a message M under a private key d is 
defined as the 2b-bit string R || S. The octet strings R and S are derived as follows: 

1. Compute the hash of the private key d, H(d) = (h0, h1, ..., h2b-1) using SHA-512 for 
Ed25519 and SHAKE256 for Ed448 (H(d)= SHAKE256(d, 912)). H(d) may be pre-
computed.  

2. Using the second half of the digest hdigest2 = hb || ... || h2b-1, define:  
2.1 For Ed25519, r = SHA-512(hdigest2 || M); Interpret r as a  64-octet little-endian 

integer. 
2.2 For Ed448, r = SHAKE256(dom4(0, context) || hdigest2 || M, 912). In IETF RFC 

8032, dom4(f, c) is defined to be (“SigEd448” || octet(f) || octet(octetlength(c)) || c). 
The string “SigEd448” is in ASCII (8 octets). The value octet(f) is the octet with 
value f, and octetlength(c) is the number of octets in string c. Interpret r as a 114-
octet little-endian integer.   

3. Compute the point [r]G. The octet string R is the encoding of the point [r]G. 
4. Derive s from H(d) as in the key pair generation algorithm. Use octet strings R, Q, and M 

to define: 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

29 

4.1 For Ed25519, digest = SHA-512(R || Q || M).  
4.2 For Ed448, digest = SHAKE256(dom4(0, context) || R || Q || M, 912). 
Interpret digest as a little-endian integer. 

5. Compute S = (r + digest × s) mod n. The octet string S is the encoding of the resultant 
integer. 

6. Form the signature as the concatenation of the octet strings R and S.   

7.7 EdDSA Signature Verification  
Inputs: 
 

1. Message M 
2. Signature R || S where R and S are octet strings 
3. Purported signature verification key Q that is valid for domain parameters D 
4. For Ed448, a string context set by the signer and verifier with a maximum length of 255 
octets; by default, context is the empty string 

 
Output: Accept or reject the signature over M as originating from the owner of public key Q. 
Process:  
 
1. Decode the first half of the signature as a point R and the second half of the signature as an 

integer t. Verify that the integer t is in the range of 0 ≤ t < n. Decode the public key Q into a 
point Q’. If any of the decodings fail, output “reject”. 

2. Using the established hash function or XOF,  
2.1 For Ed25519, compute digest = SHA-512(R || Q || M). 
2.2 For Ed448, compute digest = SHAKE256(dom4(0, context) || R || Q || M, 912) 
Interpret digest as a little-endian integer u. 

3.  Check that the verification equation [2ct]G = [2c]R + [2cu]Q’ holds. It’s sufficient, but not 
required, to instead check [t]G = R + [u]Q’. Output “reject” if verification fails; output 
“accept” otherwise. 

 

7.8 The Prehash Edwards-Curve Digital Signature Algorithm (HashEdDSA) 
The Prehash Edwards-Curve Digital Signature Algorithm (HashEdDSA) is a version of the 
EdDSA digital signature scheme. The main difference is that HashEdDSA generates a signature 
on the hash of the message M, unlike EdDSA which signs the message M directly. The domain 
parameters and key generation for HashEdDSA are exactly the same as for EdDSA with the two 
options denoted Ed25519ph and Ed448ph. 
Below are the signature generation and verification processes for Ed25519ph and Ed448ph. 
Section 7.8.3 explains potential reasons for choosing between HashEdDSA and EdDSA. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

30 

 

7.8.1 HashEdDSA Signature Generation 
Inputs: 
 

1. Bit string M to be signed 
2. Valid public-private key pair (d, Q) for domain parameters D 
3. H: SHA-512 for Ed25519ph or SHAKE256 for Ed448ph  
4. A string context set by the signer and verifier with a maximum length of 255 octets; by 

default, context is the empty string 
 
Output: The signature R || S, where R is an encoding of a point, and S is a little-endian encoded 

value. 
Process: 
 
As specified in IETF RFC 8032, the HashEdDSA signature of a message M under a private key d 
is defined as the 2b-bit string R || S. The octet strings R and S are derived as follows:  
      1.   Compute h(M) = SHA-512(M) for Ed25519ph or h(M) = SHAKE256(M, 512) for 

Ed448ph. 
2. Compute the hash of the private key d, H(d) = (h0, h1, ..., h2b-1) using SHA-512 for 
Ed25519ph and SHAKE256 for Ed448ph (H(d) = SHAKE256(d, 912) ). H(d) may be pre-
computed.  

3. Using the second half of the digest hdigest2 = hb || ... || h2b-1, define:  
3.1 For Ed25519ph, r = SHA-512(dom2(1, context ) || hdigest2 || h(M)); r will be 64 

octets. In IETF RFC 8032, dom2(f, c) is defined to be the octet string (“SigEd25519 
no Ed25519 collisions” || octet(f) || octet(octetlength(c)) || c). The string 
“SigEd25519 no Ed25519 collisions” is in ASCII (32 octets). The value octet(f) is 
the octet with value f, and octetlength(c) is the number of octets in string c. The 
string context is set by the signer and verifier (maximum is 255 octets) with the 
empty string as default. 

3.2 For Ed448ph, r = SHAKE256(dom4(1, context) || hdigest2 || h(M), 912), where    
context is set by the signer and verifier (maximum is 255 octets) with the empty 
string as default. Recall dom4(f,c) is defined in Section 7.6. 

In either instance, interpret r as a little-endian integer. 
4. Compute the point [r]G. The octet string R is the encoding of the point [r]G. 
5. Use octet strings R, Q, and h(M) to define: 

5.1 For Ed25519ph, digest = SHA-512(dom2(1, context ) || R || Q || h(M)). 
5.2 For Ed448ph, digest = SHAKE256(dom4(1, context ) || R || Q || h(M), 912). 
Interpret digest as a little-endian integer. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

31 

6. Compute S = (r + digest × s) mod n. The octet string S is the encoding of the resultant 
integer. 

7. Form the signature as the concatenation of the octet strings R and S.   
 

7.8.2 HashEdDSA Signature Verification 
Inputs: 
 

1. Message M 
2. Signature R || S where R and S are octet strings 
3. Purported signature verification key Q that is valid for domain parameters D 
4. A string context set by the signer and verifier with a maximum length of 255 octets; by 
default, context is the empty string 

 
Output: Accept or reject the signature over M as originating from the owner of public key Q. 
Process:  
 
1. Decode the first half of the signature as a point R and the second half of the signature as an 

integer s. Verify that the integer s is in the range of 0 ≤ s < n. Decode the public key Q into a 
point Q’. If any of the decodings fail, output “reject”. 

2. Form the bit string HashData as the concatenation of the octet strings R, Q, and h(M) (i.e., 
HashData = R || Q || h(M)) with h(M) = SHA-512(M) for Ed25519ph or h(M) = 
SHAKE256(M, 512) for Ed448ph. 

3. Using SHA-512 or SHAKE256,  
3.1  For Ed25519ph, compute digest = SHA-512(dom2(1, context ) || HashData). 
3.2  For Ed448ph, compute digest = SHAKE256(dom4(1, context ) || HashData, 912). 
Interpret digest as a little-endian integer t. 

4.  Check that the verification equation [2c s]G = [2c]R + [2ct]Q’ holds. It is sufficient, but not 
required, to instead check [s]G = R + [t]Q’. Output “reject” if verification fails; output 
“accept” otherwise. 

7.8.3  Differences between EdDSA and HashEdDSA 
A difference between EdDSA and its prehash version is that HashEdDSA generates a signature 
on the hash of the message M, unlike EdDSA which signs the message M directly. As a result, 
EdDSA must hash the message twice while HashEdDSA only needs to hash once. Another 
difference is that with EdDSA the whole message M must be either buffered or read from its 
storage twice. Thus, for long messages, it is expected that HashEdDSA will have better 
performance.    



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

32 

It should be noted that even if it is feasible to compute collisions on the hash function (or XOF) 
used, there is believed to be no adverse effect on the security of EdDSA. This property is not true 
for HashEdDSA since collisions can result in forged messages.  

  



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

33 

APPENDIX A: Key Pair Generation 

Discrete logarithm cryptography (DLC) is divided into finite field cryptography (FFC) and 
elliptic curve cryptography (ECC). The difference between the two is the type of mathematics 
that is used. DSA is an example of FFC, and ECDSA is an example of ECC. Other examples of 
DLC are the Diffie-Hellman and MQV key agreement algorithms, which have both FFC and 
ECC forms. 

The most common example of integer factorization cryptography (IFC) is RSA. 
This appendix specifies methods for the generation of ECC key pairs, secret numbers, and IFC 
key pairs. All generation methods require the use of an approved, properly instantiated 
deterministic random bit generator (DRBG). The DRBG shall have a security strength equal to 
or greater than the security strength associated with the key pairs and secret numbers to be 
generated. See SP 800-57, Part 1, for guidance on security strengths and key sizes.  
This appendix does not indicate the required conversions between bit strings and integers. When 
required by a process in this appendix, the conversion shall be accomplished as specified in 
Appendix B.2.  

A.1 IFC Key Pair Generation 

A.1.1 Criteria for IFC Key Pairs 
Key pairs for IFC consist of a public key (n, e) and a private key (n, d) where n is the modulus 
and product of two prime numbers, p and q. The security of IFC depends on the quality and 
secrecy of these primes and the private exponent d. The primes p and q shall be generated using 
one of the following methods: 

A. Both p and q are randomly generated prime numbers (random primes), where p and q 
shall both be either: 

1. Provable primes (see Appendix A.1.2) or 
2. Probable primes (see Appendix A.1.3).  

Using methods 1 and 2, p and q with lengths equal to one half the length of the modulus 
are generated. 

B. Both p and q are randomly generated prime numbers that satisfy the following additional 
conditions (Primes with Conditions): 

• (p–1) has a prime factor p1 

• (p+1) has a prime factor p2 

• (q–1) has a prime factor q1 

• (q+1) has a prime factor q2 
where p1, p2, q1 and q2 are called auxiliary primes of p and q.  
Using this method, one of the following cases shall apply: 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

34 

1. The primes p1, p2, q1, q2, p, and q shall all be provable primes (see Appendix 
A.1.4);  

2. The primes p1, p2, q1, and q2 shall be provable primes, and the primes p and q 
shall be probable primes (see Appendix A.1.5); or 

3 The primes p1, p2, q1, q2, p, and q shall all be probable primes (see Appendix 
A.1.6). 

The minimum lengths for each of the auxiliary primes p1, p2, q1, and q2 are dependent on 
nlen, where nlen is the length of the modulus n in bits. Note that nlen is also called the 
key size. The lengths of the auxiliary primes may be fixed or randomly chosen, subject to 
the restrictions in Table A.1. The maximum length is determined by nlen (the sum of the 
length of each auxiliary prime pair) and whether the primes p and q are probable primes 
or provable primes (e.g., for the auxiliary prime pair p1 and p2, len(p1) + len(p2) shall be 
less than a value determined by nlen whether p1 and p2 are generated to be probable or 
provable primes).9 

Table A.1. Minimum and maximum lengths of p1, p2, q1, and q2     

 
nlen 

Min. length of 
auxiliary primes 
p1, p2, q1, and q2 

Max. of len(p1) + len(p2) and  
len(q1) + len(q2) 

p, q Probable 
primes10 

 p, q Provable primes 

2048 ≤ nlen ≤ 3071 > 140 bits ≤ 1007 bits ≤ 494 bits 

3072 ≤ nlen ≤ 4095 > 170 bits ≤ 1518 bits ≤ 750 bits 

4096 ≤ nlen > 200 bits ≤ 2030 bits ≤ 1005 bits 

 
For different values of nlen (i.e., different key sizes), random primes or primes with conditions 
are methods allowed for the generation of p and q. 
In addition, all IFC keys shall meet the following criteria in order to conform to this standard, 
FIPS 186-5: 

1. The public exponent e shall be selected with the following constraints: 
(a) The public verification exponent e shall be selected prior to generating the 

primes, p and q, and the private signature exponent d.  

 
9 For the probable primes p and q, len(p1) + len(p2) < len(p) – log2(len(p)) – 6, and similarly for len(q1) + len(q2) and 
len(q). For the provable primes p and q, len(p1) + len(p2) < len(p)/2 – log2(len(p)) – 7, and similarly for len(q1) + 
len(q2) and len(q). In each case, len(p) = len(q) = nlen/2. 
10 If the constructed probable prime is being chosen to satisfy the (optional) additional c mod 8 requirement, then the 
size restriction on the maximum length of len(p1)+len(p2) is slightly less. The corresponding entries of this column 
become 1004 bits, 1515 bits, and 2027 bits, respectively. See Appendix B.9. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

35 

(b) The exponent e shall be an odd positive integer such that: 
 216 < e < 2256. 

Note that the value of e may be any value that meets constraint 1(b) (i.e., e may be 
either a fixed value or a random value). 

 2. The primes p and q shall be selected with the following constraints: 
(a) (p – 1) and (q – 1) shall be relatively prime to the public exponent e. 
(b) The private prime factor p shall be selected randomly and shall satisfy 

( 2 )(2(nlen / 2) – 1)  ≤  p ≤  (2nlen / 2– 1), where nlen is the appropriate length for the 
desired security_strength.  

(c) The private prime factor q shall be selected randomly and shall satisfy  
( 2 )(2(nlen / 2) – 1)  ≤  q  ≤  (2nlen / 2– 1), where nlen is the appropriate length for the 
desired security_strength.  

(d) |p – q| > 2(nlen / 2) – 100. 
3. The private signature exponent d shall be selected with the following constraints after the 

generation of p and q: 
(a) The exponent d shall be a positive integer value such that  

2nlen/ 2 < d < LCM(p – 1, q – 1), and 
(b) d = e–1 mod (LCM(p – 1, q – 1)). 

That is, the inequality in (a) holds, and 1 ≡ (ed) mod LCM(p – 1, q – 1). 

In the extremely rare event that d ≤ 2nlen / 2, then new values for p, q, and d shall be 
determined. A different value of e may be used, although this is not required. 

Any hash function used during the generation of the key pair shall be approved. 

A.1.2 Generation of Random Primes that are Provably Prime 
An approved method that satisfies the constraints of Appendix A.1.1 shall be used for the 
generation of IFC random primes p and q that are provably prime (see case A.1). One such 
method is provided in Appendices A.1.2.1 and A.1.2.2. For this method, a random seed is 
initially required (see Appendix A.1.2.1); the length of the seed is equal to twice the security 
strength associated with the modulus n. After the seed is obtained, the primes can be generated 
(see Appendix A.1.2.2).  
A.1.2.1 Get the Seed 
The following process or its equivalent shall be used to generate the seed for this method: 
Input: 

nlen The intended bit length of the modulus n. 
Output: 

status The status to be returned, where status is either SUCCESS or FAILURE. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

36 

seed The seed. If status = FAILURE, a value of zero is returned as the seed. 
Process: 

1. If nlen is not valid (see Section 5.1), then Return (FAILURE, 0). 
2. Let security_strength be the security strength associated with nlen as specified in SP 800-

57, Part 1. 
3. Obtain a string seed of at least (2 × security_strength) bits from a DRBG that supports 

the security_strength. 
4. Return (SUCCESS, seed). 

A.1.2.2 Construction of the Provable Primes p and q 
The following process or its equivalent shall be used to construct the random primes p and q (to 
be used as factors of the RSA modulus n) that are provably prime: 
Input: 

nlen The intended bit length of the modulus n. 
e The public verification exponent. 
seed The seed obtained using the method in Appendix A.1.2.1. 

Output: 
status The status of the generation process, where status is either SUCCESS or 

FAILURE. When FAILURE is returned, zero values shall be returned as the 
other parameters. 

p and q The private prime factors of n. 
Process: 

1. If nlen < 2048, then return (FAILURE, 0, 0). 
2. If ((e ≤ 216) OR (e ≥ 2256) OR (e is not odd)), then return (FAILURE, 0, 0). 
3. Set the value of security_strength in accordance with the value of nlen as specified in SP 

800-57, Part 1.  
4. If (len(seed) < 2 × security_strength), then return (FAILURE, 0, 0). 
5. working_seed = seed. 
6. Generate p: 

6.1 Using L = nlen/2, N1 = 1, N2 = 1, first_seed = working_seed and e, use the provable 
prime construction method in Appendix B.10 to obtain p and pseed. If FAILURE is 
returned, then return (FAILURE, 0, 0). 

6.2 working_seed = pseed. 
7. Generate q: 

7.1 Using L = nlen/2, N1 = 1, N2 = 1, first_seed = working_seed and e, use the provable 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

37 

prime construction method in Appendix B.10 to obtain q and qseed. If FAILURE is 
returned, then return (FAILURE, 0, 0). 

7.2 working_seed = qseed. 

8. If ( |p – q|  ≤ 2nlen/2 – 100), then go to step 7. 
9. Zeroize the internally generated seeds: 

9.1 pseed = 0  
9.2 qseed = 0  
9.3 working_seed = 0 

10. Return (SUCCESS, p, q). 

A.1.3 Generation of Random Primes that are Probably Prime 

An approved method that satisfies the constraints of Appendix A.1.1 shall be used for the 
generation of IFC random primes p and q that are probably prime (see case A.2). In addition, the 
security strength of the instance of the DRBG mechanism (see Section 8.4 in SP 800-90A, Rev. 
1 [16]) used in the algorithm below shall be equal to or greater than the security strength 
associated with nlen as specified in SP 800-57, Part 1.  

The following process or its equivalent shall be used to construct the random probable primes p 
and q (to be used as factors of the RSA modulus n): 
Input: 

nlen The intended bit length of the modulus n. 
e The public verification exponent. 
a, b (Optional parameters) Numbers from the set {1, 3, 5, 7} that may be used to add 

the further requirements p ≡ a mod 8, q ≡ b mod 8. 

Output: 
status The status of the generation process, where status is either SUCCESS or 

FAILURE.  
p and q The private prime factors of n. When FAILURE is returned, zero values shall be 

returned as p and q. 
Process: 

1. If nlen < 2048, return (FAILURE, 0, 0). 
2. If ((e ≤ 216) OR (e ≥ 2256) OR (e is not odd)), then return (FAILURE, 0, 0). 
3. Set the value of security_strength in accordance with the value of nlen as specified in SP 

800-57, Part 1.  
4. Generate p: 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

38 

4.1 i = 0. 
4.2 Obtain a string p of (nlen/2) bits from a DRBG that supports the security_strength.  
 4.2.1  (Optional) The two most significant bits in p may be set arbitrarily.   

4.3 If p is generated with the p ≡ a mod 8 restriction, then p = p + ((a – p) mod 8),  
 Else if (p is not odd), then p = p + 1. 

4.4 If ((p < ( 2 )(2(nlen / 2) – 1)), then go to step 4.2. 

4.5 If (GCD(p − 1, e) = 1), then  
4.5.1 Test p for primality as specified in Appendix B.3 using an appropriate 

value from Table B-1 in Appendix B.3 as the number of iterations.  
4.5.2 If p is PROBABLY PRIME, then go to step 5. 

4.6 i= i + 1. 

4.7 If (i ≥ 5 × nlen, then return (FAILURE, 0, 0) 

Else go to step 4.2. 
5. Generate q: 

5.1 i = 0. 
5.2 Obtain a string q of (nlen/2) bits from a DRBG that supports the security_strength  
 5.2.1  The two most significant bits in q may be set arbitrarily.   

5.3 If q is generated with the q ≡ b mod 8 restriction, then q = q + ((b – q) mod 8),  
 Else if (q is not odd), then q = q + 1. 

5.4 If ((q < ( 2 )(2(nlen / 2) – 1)), then go to step 5.2. 
5.5 If (|p – q| ≤ 2nlen/2 – 100), then go to step 5.2. 

5.6 If (GCD(q−1, e) = 1) then  
5.6.1 Test q for primality as specified in Appendix B.3 using an appropriate 

value from Table B-1 in Appendix B.3 as the number of iterations.  
5.6.2 If q is PROBABLY PRIME, then return (SUCCESS, p, q). 

5.7 i = i + 1. 

5.8 If (i ≥ 10 × nlen, then return (FAILURE, 0, 0) 
Else go to step 5.2. 

A.1.4 Generation of Provable Primes with Conditions Based on Auxiliary 
Provable Primes 

This section specifies an approved method for the generation of the IFC primes p and q with the 
additional conditions specified in Appendix A.1.1, case B.1, where p, p1, p2, q, q1, and q2 are all 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

39 

provable primes. For this method, a random seed is initially required (see Appendix A.1.2.1); the 
length of the seed is equal to twice the security strength associated with the modulus n. After the 
first seed is obtained, the primes can be generated. 
Let bitlen1, bitlen2, bitlen3, and bitlen4 be the bit lengths for p1, p2, q1, and q2, respectively, in 
accordance with Table A.1. The following process or its equivalent shall be used to generate the 
provable primes: 
Input: 

nlen The intended bit length of the modulus n. 
e The public verification exponent. 
seed The seed obtained using the method in Appendix A.1.2.1. 

Output: 
status The status of the generation process, where status is either SUCCESS or 

FAILURE. If FAILURE is returned, then zeros shall be returned as the values 
for p and q. 

p and q The private prime factors of n. 
Process: 

1. If nlen < 2048, then return (FAILURE, 0, 0). 
2. If ((e ≤ 216) OR (e ≥ 2256) OR (e is not odd)), then return (FAILURE, 0, 0). 
3. Set the value of security_strength in accordance with the value of nlen as specified in SP 

800-57, Part 1.  
4. If (len(seed) < 2 × security_strength), then return (FAILURE, 0, 0). 
5. working_seed = seed. 
6. Generate p:  

6.1 Using L = nlen/2, N1 = bitlen1, N2 = bitlen2, firstseed = working_seed, and e, use the 
provable prime construction method in Appendix B.10 to obtain p, p1, p2, and 
pseed. If FAILURE is returned, return (FAILURE, 0, 0). 

6.2 working_seed = pseed. 
7. Generate q:  

7.1 Using L = nlen/2, N1 = bitlen3, N2 = bitlen4 and firstseed = working_seed, and e, use 
the provable prime construction method in Appendix B.10 to obtain q, q1, q2, and 
qseed. If FAILURE is returned, return (FAILURE, 0, 0). 

7.2 working_seed = qseed. 

8. If ( |p – q|  ≤ 2nlen/2 – 100), then go to step 7. 

9. Zeroize the internally generated seeds: 
9.1 pseed = 0.  



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

40 

9.2 qseed = 0.  
9.3 working_seed = 0. 

10. Return (SUCCESS, p, q). 

A.1.5 Generation of Probable Primes with Conditions Based on Auxiliary 
Provable Primes  

This section specifies an approved method for the generation of the IFC primes p and q with the 
additional conditions specified in Appendix A.1.1, case B.2, where p1, p2, q1, and q2 are provably 
prime, and p and q are probably prime. For this method, a random seed is initially required (see 
Appendix A.1.2.1); the length of the seed is equal to twice the security strength associated with 
the modulus n. After the first seed is obtained, the primes can be generated. 
 Let bitlen1, bitlen2, bitlen3, and bitlen4 be the bit lengths for p1, p2, q1, and q2, respectively, in 
accordance with Table A.1. The following process or its equivalent shall be used to construct p 
and q. 
 

Input: 
nlen The intended bit length of the modulus n. 
e The public verification exponent. 
seed The seed obtained using the method in Appendix A.1.2.1. 
a, b (Optional parameters) Numbers from the set {1, 3, 5, 7} that may be used to 

add the further requirements p ≡ a mod 8, q ≡ b mod 8.   
 

Output: 
status The status of the generation process, where status is either SUCCESS or 

FAILURE. If FAILURE is returned, then zeros shall be returned as the 
values for p and q. 

p and q  The private prime factors of n. 
Process: 

1. If nlen < 2048, then return (FAILURE, 0, 0). 
2. If ((e ≤ 216) OR (e ≥ 2256) OR (e is not odd)), then return (FAILURE, 0, 0). 
3. Set the value of security_strength in accordance with the value of nlen as specified in 

SP 800-57, Part 1.  
4. If (len(seed) < 2 × security_strength), then return (FAILURE, 0, 0). 

Comment: Generate four primes p1, p2, q1, and q2 
that are provably prime (steps 5.1, 5.2, 6.1, and 6.2). 

5. Generate p: 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

41 

5.1 Using bitlen1 as the length and seed as the input_seed, use the random prime 
generation routine in Appendix B.6 to obtain p1 and prime_seed. If FAILURE 
is returned, then return (FAILURE, 0, 0) and zeroize all internal variables 
generated. 

5.2 Using bitlen2 as the length and prime_seed as the input_seed, use the random 
prime generation routine in Appendix B.6 to obtain p2 and a new value for 
prime_seed. If FAILURE is returned, then return (FAILURE, 0, 0) and zeroize 
all internal variables generated. 

5.3 Generate a prime p using the routine in Appendix B.9 with inputs of p1, p2, nlen, 
e, security_strength, and, optionally, a,11 also obtaining Xp. If FAILURE is 
returned, then return (FAILURE, 0, 0) and zeroize all internal variables 
generated. 

6. Generate q: 
6.1. Using bitlen3 as the length and prime_seed as the input_seed, use the random 

prime generation routine in Appendix B.6 to obtain q1 and a new value for 
prime_seed. If FAILURE is returned, then return (FAILURE, 0, 0) and zeroize 
all internal variables generated. 

6.2 Using bitlen4 as the length and prime_seed as the input_seed, use the random 
prime generation routine in Appendix B.6 to obtain q2 and a new value for 
prime_seed. If FAILURE is returned, then return (FAILURE, 0, 0) and zeroize 
all internal variables generated. 

6.3 Generate a prime q using the routine in Appendix B.9 with inputs of q1, q2, nlen, 
e, security_strength, and, optionally, b12, also obtaining Xq. If FAILURE is 
returned, then return (FAILURE, 0, 0) and zeroize all internal variables 
generated. 

7. If ((|p – q|  ≤ 2nlen/2 –100) OR (|Xp – Xq| ≤ 2nlen/2 – 100)), then go to step 6. 
8. Zeroize the internally generated variables that are not returned: 

8.1 Xp = 0. 
8.2 Xq = 0. 
8.3 prime_seed = 0. 
8.4 p1 = 0. 
8.5  p2 = 0. 
8.6 q1 = 0. 

 
11 If using the optional parameter a, the upper bounds on the value of len(p1)+len(p2) that are given in Table A.1 
shall all be reduced by 3. 
12 If using the optional parameter b, the upper bounds on the value of len(q1)+len(q2) that are given in Table A.1 
shall all be reduced by 3. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

42 

8.7 q2 = 0. 
9. Return (SUCCESS, p, q). 

A.1.6 Generation of Probable Primes with Conditions Based on Auxiliary 
Probable Primes  

An approved method that satisfies the constraints of Appendix A.1.1 shall be used for the 
generation of IFC primes p and q that are probably prime and meet the additional constraints of 
Appendix A.1.1 (see case B.3). For this case, the prime factors p1, p2, q1, and q2 are also probably 
prime. 
Four random numbers Xp1, Xp2, Xq1, and Xq2 are generated, from which the prime factors p1, p2, 
q1, and q2 are determined. p1, p2, and an additional random number Xp are then used to determine 
p, and q1, q2, and a random number Xq are used to obtain q. Let bitlen1, bitlen2, bitlen3, and 
bitlen4 be the bit lengths for p1, p2, q1, and q2, respectively, chosen in accordance with Table A.1. 
The following process or its equivalent shall be used to generate p and q: 

Input: 
nlen The intended bit length of the modulus n. 
e The public verification exponent. 
a, b (Optional parameters) Numbers from the set {1, 3, 5, 7} that may be used 

to add the further requirements p ≡ a mod 8, q ≡ b mod 8.   
 

Output: 
status The status of the generation process, where status is either SUCCESS or 

FAILURE. If FAILURE is returned, then zeros shall be returned as the 
values for p and q. 

p and q The private prime factors of n. 
Process: 

1. If nlen < 2048, then return (FAILURE, 0, 0). 
2. If ((e ≤ 216) OR (e ≥ 2256) OR (e is not odd)), then return (FAILURE, 0, 0). 
3. Set the value of security_strength in accordance with the value of nlen as specified in 

SP 800-57, Part 1.  
4. Generate p: 

4.1 Generate an odd integer Xp1 of length bitlen1 bits and a second odd integer Xp2 
of length bitlen2 bits using an approved random bit generator that supports the 
security_strength. 

4.2 Sequentially search successive odd integers, starting at Xp1 until the first 
probable prime p1 is found. Candidate integers shall be tested for primality as 
specified in Appendix B.3. Repeat the process to find p2, starting at Xp2. The 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

43 

probable primes p1 and p2 shall be the first integers that pass the primality test. 
4.3 Generate a prime p using the routine in Appendix B.9 with inputs of p1, p2, nlen, 

e, security_ strength, and, optionally, a13, also obtaining Xp. If FAILURE is 
returned, return (FAILURE, 0, 0) and zeroize all internal variables generated. 

5. Generate q: 
5.1 Generate an odd integer Xq1 of length bitlen3 bits and a second odd integer Xq2 

of length bitlen4 bits using an approved random bit generator that supports the 
security_strength. 

5.2 Sequentially search successive odd integers, starting at Xq1 until the first 
probable prime q1 is found. Candidate integers shall be tested for primality as 
specified in Appendix B.3. Repeat the process to find q2, starting at Xq2. The 
probable primes q1 and q2 shall be the first integers that pass the primality test. 

5.3 Generate a prime q using the routine in Appendix B.9 with inputs of q1, q2, nlen, 
e, security_ strength, and, optionally, b,14 also obtaining Xq. If FAILURE is 
returned, return (FAILURE, 0, 0) and zeroize all internal variables generated. 

6. If ((|Xp – Xq| ≤ 2nlen/2 –100) OR (|p – q|  ≤ 2nlen/2 – 100))), then go to step 5. 
7. Zeroize the internally generated values that are not returned: 

7.1 Xp = 0. 
7.2 Xq = 0. 
7.3 Xp1 = 0. 
7.4 Xp2 = 0. 
7.5 Xq1 = 0. 
7.6 Xq2 = 0. 
7.7 p1 = 0. 
7.8 p2 = 0. 
7.9 q1 = 0. 
7.10 q2 = 0. 

8. Return (SUCCESS, p, q). 

A.2 ECC Key Pair Generation  
An ECDSA key pair d and Q is generated for a set of domain parameters (q, FR, a, b {, 
domain_parameter_seed}, G, n, h). Two methods are provided for the generation of the private 

 
13 If using the optional parameter a, the upper bounds on the value of len(p1)+len(p2) that are given in Table A.1 
shall all be reduced by 3. 
14 If using the optional parameter b, the upper bounds on the value of len(q1)+len(q2) that are given in Table A.1 
shall all be reduced by 3. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

44 

key d and public key Q in sections A.2.1 and A.2.2. One of these two methods shall be used to 
generate d and Q for both ECDSA and deterministic ECDSA.   
Prior to generating ECDSA key pairs, assurance of the validity of the domain parameters (q, FR, 
a, b {, domain_parameter_seed}, G, n, h) shall have been obtained as specified in Section 3.1. 
For both ECDSA and deterministic ECDSA, the valid bit-lengths of n are provided in Table 1 in 
Section 6.1.1.  
Generation of the public-private key pair (d, Q) for EdDSA shall be done as described by the 
method in A.2.3. 

A.2.1 ECDSA Key Pair Generation using Extra Random Bits 
In this method, more bits are requested from the DRBG than are needed for d so that the bias 
produced by the mod function in step 6 is negligible.  

The following process or its equivalent may be used to generate an ECDSA key pair. 

Input:  
1. (q, FR, a, b {, domain_parameter_seed}, G, n, h)  

The domain parameters that are used for this process. n is a prime number, 
and G is a point on the elliptic curve.  

Output:  
1. status The status returned from the key pair generation procedure. The status will 

indicate SUCCESS or an ERROR. 
2.  (d, Q) The generated private and public keys. If an error is encountered during 

the generation process, invalid values for d and Q should be returned as 
represented by Invalid_d and Invalid_Q in the following specification. d is 
an integer, and Q is an elliptic curve point. The generated private key d is 
in the interval [1, n–1]. 

Process: 
1. N = len(n). 

Comment: Check that N ≥ 224; see Table 1 (Section 6.1.1). 
2. If N is invalid, then return an ERROR indication, Invalid_d, and Invalid_Q. 
3. Obtain a string returned_bits of size l from a DRBG with a security strength of 

requested_security_strength (i.e., the security strength associated with N; see SP 800-
57, Part 1) or more. The output size l should be set to a value that is not less than the 
recommended output size provided in column 3 of Table A.2, where GF(p) indicates 
the field over which the curve is defined. The output size shall be set to a value that is 
not less than the required output size indicated in column 2. Extra bits from the 
DRBG are specified to remove the bias produced by the mod function. If an ERROR 
indication is returned, then return an ERROR indication, Invalid_d, and Invalid_Q. 

4. Convert returned_bits to the (non-negative) integer d using the procedure in 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

45 

Appendix A.4.1 or an equivalent process with the value of ε set to 2−t, where t is an 
integer at least 64. If the procedure outputs INVALID, return an ERROR indication, 
Invalid_d, and Invalid_Q.  

5. Q = [d]G. 
6. Return SUCCESS, d, and Q. 

 
Table A.2: Minimum recommended and required output length l of the DRBG when 
used for deriving an ECDSA private key via modular reduction for the recommended 
curves over prime fields GF(p). 

Prime15 p Minimum output-size l 
(Required)  

Minimum output-size l 
(Recommended)  

p224 224 224 

p256 288 352 

p384 384 384 

p521 521 521 

p255 252 252 

p448 446 446 

A.2.2 ECDSA Key Pair Generation by Rejection Sampling 
In this method, a random number is obtained and tested to determine that it will produce a value 
of d in the correct range. If d is out of range, an ERROR is returned.  

The following process or its equivalent may be used to generate an ECDSA key pair: 

Input:  
1. (q, FR, a, b {, domain_parameter_seed}, G, n, h)  

The domain parameters that are used for this process. n is a prime number, 
and G is a point on the elliptic curve. 

Output:  
1. status The status returned from the key pair generation procedure. The status will 

indicate SUCCESS or an ERROR. 
2.  (d, Q) The generated private and public keys. If an error is encountered during 

the generation process, invalid values for d and Q should be returned, as 
represented by Invalid_d and Invalid_Q in the following specification. d is 

 
15 The primes in this column correspond to the size of the prime fields for the NIST-recommended curves specified 
in SP 800-186. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

46 

an integer, and Q is an elliptic curve point. The generated private key d is 
in the interval [1, n–1]. 

Process: 
1. N = len(n).  

Comment: Check that N ≥ 224; see Table 1 
(Section 6.1.1). 

2. If N is invalid, then return an ERROR indication, Invalid_d, and Invalid_Q. 
3. Obtain a string of N returned_bits from a DRBG with a security strength of 

requested_security_strength (i.e., the security strength associated with N; see SP 800-
57, Part 1) or more. If an ERROR indication is returned, then return an ERROR 
indication, Invalid_d, and Invalid_Q. 

4.  Convert returned_bits to the (non-negative) integer d using the procedure in Appendix 
A.4.2 or an equivalent process. If the procedure outputs INVALID, return an 
ERROR indication, Invalid_d, and Invalid_Q. 

5.   Q = [d]G. 
6. Return SUCCESS, d, and Q. 

A.2.3 EdDSA Key Pair Generation 
EdDSA public keys have exactly b bits, and EdDSA signatures have exactly 2b bits. The value b 
is a multiple of 8. Therefore, public key and signature lengths are an integral number of octets. 
For Ed25519, b is 256, so the private key is 32 octets. For Ed448, b is 456, and the private key is 
57 octets. See IETF RFC 8032.  
The following process or its equivalent may be used to generate an EdDSA key pair. 
Inputs: 

1. b: for Ed25519 b = 256, while for Ed448 b = 456. 
2. requested_security_strength: 128 bits of security strength for Ed25519 or 224 bits of 

security strength for Ed448. 
3. H: SHA-512 for Ed25519 or SHAKE256 for Ed448.   

 
Output: Valid public-private key pair (d, Q) for domain parameters D.  The private key d is a 
string of b bits, while the public key Q is the encoding of an elliptic curve point. 
 
Process: 

1. Obtain a string of b bits from an approved DRBG (as specified in SP 800-90A [16]) 
with a security strength of requested_security_strength or more. The private key d is this 
string of b bits. 

2. Compute the hash of the private key d, H(d) = (h0, h1, ..., h2b-1) using SHA-512 for 
Ed25519 and SHAKE256 for Ed448 (H(d)= SHAKE256(d, 912)). H(d) may be pre-
computed. Note H(d) is also used in the EdDSA signature generation; see Section 7.6. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

47 

3. The first half of H(d), (i.e. hdigest1 = (ℎ0,ℎ1, … , ℎ𝑏𝑏−1)) is used to generate the public 
key. Modify hdigest1 as follows: 
3.1 For Ed25519, the first three bits of the first octet are set to zero; the last bit of the last 

octet is set to zero; and the second to last bit of the last octet is set to one. That is, 
ℎ0 = ℎ1 = ℎ2 = 0, ℎ𝑏𝑏−2 = 1, and ℎ𝑏𝑏−1 = 0. 

3.2 For Ed448, the first two bits of the first octet are set to zero, all eight bits of the last 
octet are also set to zero, and the last bit of the second to last octet is set to one. That 
is, ℎ0 = ℎ1 = 0, ℎ𝑏𝑏−9 = 1, and ℎ𝑖𝑖 = 0 for 𝑝𝑝 − 8 ≤ 𝑝𝑝 ≤ 𝑝𝑝 − 1. 

4. Determine an integer s from hdigest1 using little-endian convention (see Section 7.2).   
5. Compute the point [s]G. The corresponding EdDSA public key Q is the encoding (See 

Section 7.2) of the point [s]G.  

A.3 ECDSA Per-Message Secret Number Generation 
ECDSA requires the generation of a new secret number k for each message to be signed. This 
section provides two methods for the generation of a pseudorandom integer in the interval [1, 
n−1]. Both methods use the output of a cryptographically strong DRBG and convert this to an 
integer in this interval where the respective methods differ in how these reduce bias. The method 
of Section A.3.1 uses additional randomness to ensure that biases introduced during the 
conversion process are negligible in practice, whereas the method of Section A.3.2 simply 
checks whether the random output is in the requested interval. 
Two methods are provided for the random generation of k; one of these two methods or another 
approved method shall be used. The cryptographic routine in which these values are used shall 
know which of these methods has been used.  
The valid values of n are provided in Section 6.1.1. Let inverse(k, n) be a function that computes 
the inverse of a (non-negative) integer k with respect to multiplication modulo the prime number 
n. A technique for computing the inverse is provided in Appendix B.1. 

A.3.1 Per-Message Secret Number Generation Using Extra Random Bits 
This method uses a cryptographically strong DRBG to produce a random bit string that is at least 
64 bits longer than the bit-size of the requested random integer k in the interval [1, n−1]. More 
bits are requested from the DRBG than are needed for k so that statistical bias introduced by the 
modular reduction step is negligible. 
The following procedure or its equivalent may be used to generate a random integer in the 
interval [1, n−1].  

Inputs:  
1.  n is a positive integer and a prime number 

2. Threshold value t ≥ 64 

Outputs:  
1. status The status returned from the secret number generation procedure. The 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

48 

status will indicate SUCCESS or FAILURE or an ERROR; 
2.  k Integer in the interval [1, n–1]. A value for k shall only be returned if the 

status indicates SUCCESS. 
Process: 

1. Set N to the bit-length of n. Check that N ≥ 224; see Table 1 (Section 6.1.1).  

2. If t < 64, return a FAILURE indication.  

3. Obtain a bit string of N+t returned_bits from the established DRBG with requested 
security strength (i.e., the security strength associated with N; see SP 800-57, Part 1) 
or more. If this procedure returns an ERROR indication, return a FAILURE 
indication. 

4. Convert returned_bits to the (non-negative) integer k using the procedure in 
Appendix A.4.1 or an equivalent process with the value of ε set to 2−t. If the 
procedure outputs INVALID, return an ERROR indication.  

5. Return a SUCCESS indication and k. 

A.3.2 Per-Message Secret Number Generation of Private Keys by Rejection 
Sampling 

This method uses a cryptographically strong DRBG to produce a random bit string that has the 
same bit-size as the requested random integer k in the interval [1, n−1]. The value of k in the 
requested range is determined by this bit string. This non-deterministic procedure removes bias 
in practice. 
In this method, a random number is obtained and tested to determine that it will produce a value 
of k in the correct range. If k is out of range, an ERROR is returned. 
The following procedure or its equivalent may be used to generate a random integer per-message 
secret number in the interval [1, n −1].  

Input:  
1. n is a positive integer and a prime number 

 
Outputs:  

1. status SUCCESS or FAILURE 
2. k Integer in the interval [1, n–1]. A value for k shall only be returned if the 

status indicates SUCCESS. 
Process: 

1. Set N to the bit-length of n. 
Check that N ≥ 224; see Table 1 (Section 6.1.1). 

2. Obtain a bit string of N returned_bits from the established DRBG of at least 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

49 

requested security strength (i.e., the security strength associated with N; see SP 800-
57, Part 1) or more. If this procedure returns an ERROR indication, return a 
FAILURE indication. 

3. Convert returned_bits to the (non-negative) integer k using the procedure in 
Appendix  A.4.2 or an equivalent process. If the procedure outputs INVALID, return 
an ERROR indication. 

4. Return a SUCCESS indication and k. 
 

A.3.3  Per-Message Secret Number Generation for Deterministic ECDSA 
The deterministic ECDSA signature is generated using the value k, obtained by using the hash of 
the message M and the private key d as inputs to a deterministic secret number generation 
process that is based on the HMAC_DRBG specified in SP 800-90A [16]. HMAC_DRBG shall 
be used with the same hash function as the one used to process the message M prior to signature 
generation. The generation process is also provided in Section 3.2 of IETF RFC 6979. In this 
method, the private key d is concatenated with the hash of the message to be signed and used as a 
seed to instantiate the generation process (i.e., the HMAC_DRBG). Then, nlen bits are requested 
where nlen is the length in bits of n, the order of the point G. The result is a candidate for k. If k 
does not lie in the interval [1, n−1], additional nlen-bit outputs are requested until the candidate 
for k lies in the required interval. Note that this method for generating the per-message secret 
number does not affect the actual signature generation process but does provide a different 
signature than is produced using the randomly generated value of k (see Section 6.3.1).  
Let hashlen be the length of the hash function output in bits. 
 

Inputs: 
 

1. The private key d 
2. H, the hash of the message to be signed 
3. n, the order of the point G 

 
Output: Secret number k.  

 
Process: 

 
1. Instantiate the per-message secret number generation process 

1.1 Convert the private key d to an octet string using the procedure in Appendix 
B.2.3. 

1.2 Convert the Hash H to an octet string using the procedure in Appendix B.2.4 
with modulus n. 

1.3  Form seed_material by concatenating the octet string of the private key d with 
the octet string of the Hash H.  

1.4 Key = 0x00 00...00, where Key is 8 × hashlen / 8 bits in length. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

50 

1.5 V = 0x01 0x01...0x01 where V is 8 × hashlen / 8 bits in length. 
1.6 Key = HMAC(Key, V || 0x00 || seed_material). 
1.7 V = HMAC(Key, V). 
1.8 Key = HMAC(Key, V || 0x01 || seed_material). 
1.9 V = HMAC(Key, V). 

2. nlen = len(n). 
3. k = 0. 
4. Generate a candidate value for k by requesting nlen bits from the generation process. 

While (k = 0) OR (k ≥ n), do 
4.1 temp = Null. 
4.2 While (len (temp) < nlen) do: 

4.2.1 V = HMAC(Key, V). 
4.2.2 temp = temp || V. 

4.3 Convert the first nlen bits of the bit string temp into an integer k using the 
conversion routine in Appendix B.2.1. 

4.4 If (0 < k < n), return k16. 
4.5 Key = HMAC(Key, V || 0x00). 
4.6 V = HMAC(Key, V). 

5.   Return k. 
Equivalently, the HMAC_DRBG may be used to generate k; see Section 3.3 in IETF RFC 6979. 
Note that a new HMAC_DRBG instance is instantiated for each signature generation process.    

A.4 Random Values mod n 
Key pair generation and per-message secret number generation for ECDSA require random 
values generated in the interval [1, 𝑛𝑛 − 1]. This appendix provides two methods which both use 
the output of an approved (i.e., cryptographically strong) DRBG and convert this to an integer in 
this interval. The respective methods differ in how they reduce bias. 
The method of Appendix A.4.1 reduces the output of this DRBG modulo n − 1 while ensuring 
that any bias introduced during this conversion process is negligible in practice, whereas the 
method of Appendix A.4.2 simply checks whether the random output is in the requested interval. 

 
16 In RFC 6979, before returning k, it is first checked that the resulting value of r in the ECDSA signature will not 
equal 0. This will occur with negligible probability and is checked for in step 11 of the ECDSA signature generation 
algorithm in Section 6.4.1.   



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

51 

A.4.1 Conversion of a Bit String to an Integer mod n via Modular Reduction 
This method uses the output of an approved DRBG in the interval [0, N−1] and converts it to an 
integer in the interval [0, n−1], simply reducing this output modulo n−1 while ensuring that any 
biases introduced during this conversion process are negligible in practice. If n – 1 does not 
divide N, this invariably introduces some bias, no matter the quality of the input distribution, 
which is easy to determine from N and n. In particular, if the bit-length of N is sufficiently larger 
than that of n, the bias introduced by the modular reduction operation is negligible in practice. 
The same is true if N is close to a multiple of n (e.g., if n is close to a power of two, and the input 
distribution is generated by a strong DRBG with a fixed bit-length output). The method ensures 
that outputs are in the interval [1, n−1]. 

Inputs: 
1. Bit string X, of length l.   
2. Positive integer 𝑛𝑛, where 2 ≤ 𝑛𝑛 < 2𝑙𝑙. 
3. Threshold value 0 ≤ ε ≤ 2−64 (the upper bound on bias) 

Output: Integer x in the interval [1, n−1], or INVALID. 

Process:  
1. Let l be the length of the bit string X. Set N = 2l, r = N mod (𝑛𝑛 − 1), and 𝜌𝜌 = 𝑟𝑟

𝑛𝑛−1
. If 𝑁𝑁 <

𝑛𝑛 then return INVALID. 
2. If 2𝜌𝜌(1 − 𝜌𝜌)(𝑛𝑛 − 1) > 𝜖𝜖 × 𝑁𝑁 or if ε > 2−64, return INVALID. 
3. Convert the bit string X to the integer x using the procedure of Appendix B.2.1. 
4. Set x = x mod (𝑛𝑛 − 1). 
5. Set x = x + 1. 
6. Output x. 

A.4.2 Conversion of a Bit String to an Integer mod n via the Discard Method 

This method for converting a probability distribution on [0, N−1] into a probability distribution 
on the interval [0, n−1] accepts an output in the interval [0, N−1] only if this is also in the 
interval [0, n−1] and returns INVALID otherwise. If n is an integer in the interval [N/2, N], this 
results in a distribution that is always close to that of the original distribution. In contrast to the 
method in Appendix A.4.1, this method is nondeterministic unless n = N. Note that if n is close 
to a power of two, and the input distribution is generated by a strong DRBG with a fixed bit-
length output, the probability of returning INVALID is low. 
Inputs:  

1. Bit string X, of length l.  
2. Positive integer n, where 2 ≤ 𝑛𝑛 < 2𝑙𝑙. 

 

Output: Integer x in the interval [1, n−1], or INVALID. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

52 

Process:  
1. Set N = 2l, where l is the length of the bit string X. 
2. If 𝑛𝑛 ≤ 1, or 𝑛𝑛 ≥ 𝑁𝑁, then output INVALID. 
3. Convert the bit string X to the integer x using the procedure of Appendix B.2.1. 
4. If x is not an integer in the interval [0, 𝑛𝑛 − 2], output INVALID. 
5. Set 𝑥𝑥 = 𝑥𝑥 + 1. 
6. Output x. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

53 

Appendix B: Generation of Other Quantities  

This appendix contains routines for the supplementary processes required for the implementation 
of this standard. Appendix B.1 is needed to produce the inverse of the per-message secret k (see 
Section 6.3 and Appendices A.2.1 and A.2.2) and the inverse of the signature portion s that is 
used during signature verification (see Section 6.4). The routines in Appendix B.2 are required to 
convert between bit strings and integers when implementing this standard. Appendix B.3 
contains probabilistic primality tests to be used during the generation of RSA key pairs. 
Appendices B.4 and B.5 contain algorithms required during the Lucas probabilistic primality test 
of Appendix B.3.3 to check for a perfect square and to compute the Jacobi symbol. Appendix 
B.6 contains the Shawe-Taylor algorithm for the construction of primes. Appendix B.7 provides 
a process to perform trial division as required by the random prime generation routine in 
Appendix B.6. The sieve procedure in Appendix C.8 is needed by the trial division routine in 
Appendix B.7. The trial division process in Appendix B.7 and the sieve procedure in Appendix 
B.8 have been extracted from ANS X9.80 [23], Prime Number Generation, Primality Testing, and 
Primality Certificates. Appendix B.9 is required during the generation of RSA key pairs. 
Appendix B.10 provides a method for constructing provable primes for RSA (see Appendix 
A.1.2.2 and A.1.4). 

B.1 Computation of the Inverse Value 
Provided that 0 < z < a  and 𝐆𝐆𝐆𝐆𝐆𝐆(𝑧𝑧, 𝑝𝑝) = 1, this algorithm is used to compute the multiplicative 
inverse z-1 = z–1 mod a, where, 0 < z–1 < a. The algorithm given below is for reference purposes.  
Other (constant time) algorithms that produce an equivalent result may be used. 

Input:  
1. z  The value to be inverted mod a.  
2. a The modulus, a positive integer greater than 1.  

Output: 
1. status The status returned from this function, where the status is either 

SUCCESS or ERROR. 
2. z–1 mod a The multiplicative inverse of z mod a if it exists. 

Process: 
1. Verify that a and z are positive integers such that z < a; if not, return an ERROR 

indication. 
2. Set i = a, j = z, y2 = 0, and y1 = 1. 

3. quotient = i/j. 
4. remainder = i – ( j × quotient). 
5. y = y2 – (y1 × quotient). 
6. Set i = j, j = remainder, y2 = y1, and y1 = y. 
7. If (j > 0), then go to step 3. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

54 

8. If (i ≠ 1), then return an ERROR indication. 
9. Return SUCCESS and z-1 = y2 mod a. 

B.2 Conversion between Bit Strings, Integers, and Octet Strings 

B.2.1 Conversion of a Bit String to an Integer 

An n-long sequence of bits { x1, …, xn } is converted to an integer by the rule 

{ x1, … , xn } → (x1 × 2n–1) + (x2 × 2n–2) + … + (xn-1 × 2) + xn . 

Note that the first bit of a sequence corresponds to the most significant bit of the corresponding 
integer, and the last bit corresponds to the least significant bit.  

Input:  

1. b1, b2, … , bn The bit string to be converted. 

Output:  
1. C The requested integer representation of the bit string. 

Process: 

1. Let (b1, b2, … , bn) be the bits of b from leftmost to rightmost. 

2. 𝐶𝐶 = ∑ 2(𝑛𝑛−𝑖𝑖)𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1  

3. Return C. 
In this standard, the binary length of an integer C is defined as the smallest integer n satisfying C 
< 2n.  

B.2.2 Conversion of an Integer to a Bit String 
An integer x in the range 0 ≤ x < 2n may be converted to an n-long sequence of bits by using its 
binary expansion as shown below: 

x = (x1 × 2n–1) + (x2 × 2n–2) + … + (xn–1 × 2) + xn → {x1, … , xn} 

Note that the first bit of a sequence corresponds to the most significant bit of the corresponding 
integer, and the last bit corresponds to the least significant bit.  

Input:  
1. C The non-negative integer to be converted. 

Output:  

1. b1, b2, …, bn The bit string representation of the integer C. 

Process: 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

55 

1. Let (b1, b2, …, bn) represent the bit string, where bi = 0 or 1, and b1 is the most 
significant bit, while bn is the least significant bit. 

2. For any integer n that satisfies C < 2n, the bits bi shall satisfy: 

𝐶𝐶 = �2(𝑛𝑛−𝑖𝑖)𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

3. Return b1, b2, …, bn. 

In this standard, the binary length of the integer C is defined as the smallest integer n that 
satisfies C < 2n. 

B.2.3  Conversion of an Integer to an Octet String 
An integer may be converted to octet strings according to the following procedure: 

Inputs:  

1. Non-negative integers C and L, where C<256L. 

Output:  

1. Octet-string X of length L. 

Process:  

1. The integer C can be uniquely written as C=CL−1 256L−1 + CL−2 256L−2 + … + C1 256 + 
C0, where each coefficient Ci is an integer in the interval [0,255]. 

2. Set X to the octet string (CL−1, CL-2, …, C1, C0); 
3. Output X. 

 

B.2.4  Conversion of a Bit String to an Octet String 

An n-long sequence of bits { x1, …, xn } may be converted to an octet string according to the 
following procedure: 

Input:  

1. b1, b2, … , bn , the bit string to be converted. 

2. N, an integer modulus.  
Output:  

1. Octet-string X of length L. 
Process: 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

56 

1. Truncate or expand the input bit string to the desired length len(N) 
a. If n < len(N) then add (len(N)-n) bits (of value zero) to the left of the sequence 

(i.e., before the input bits in the sequence order). 

b. If 𝑛𝑛 ≥ len(N) then the len(N) leftmost bits are kept, and subsequent bits are 
discarded. 

2. Convert the resulting sequence of bits (b1, b2, … , bk) into an integer value C using the 
bit string to integer conversion routine C = ∑ 2(k-i)bi in Appendix B.2.1. 

3. If 𝐶𝐶 > 𝑁𝑁, then set C = C mod N. 
4. Convert the integer C to a sequence of octets using the routine in Appendix B.2.3, where 

C=CL−1 256L−1 + CL−2 256L−2 + … + C1 256 + C0, and each coefficient Ci is an integer in 
the interval [0,255]. 

5. Set X to be the octet string (CL−1, CL-2, …, C1, C0). 
6. Output X. 

 

B.3 Probabilistic Primality Tests 
A probabilistic primality test may be required during the generation and validation of prime 
numbers. An approved robust probabilistic primality test shall be selected and used.  
There are several probabilistic algorithms available. The Miller-Rabin probabilistic primality 
tests described in Appendices B.3.1 and B.3.2 are versions of a procedure due to M.O. Rabin, 
based in part on ideas from Gary L. Miller; one of these versions shall be used as the Miller-
Rabin test discussed below. For more information, see [24, p. 395]. For these tests, let the DRBG 
be an approved deterministic random bit generator. 
There are several Lucas probabilistic primality tests available; the version provided in [25] is 
specified in Appendix B.3.3. 
Before applying the probabilistic methods for testing primality, an optional trial division test may 
be performed (see Appendix B.7). Choose a trial division limit L between 103 and 105 and check 
if any of the prime numbers starting with 2 and not exceeding L divide w, where w is the integer 
to be tested for primality. This integer may be either p or q, or one of the auxiliary primes p1, p2, 
q1, or q2. If this trial division demonstrates that w is a multiple of another prime, then return 
COMPOSITE and do not perform any further primality testing for this candidate. 
If the trial division was either not performed or it did not find a division factor for the prime 
candidate, then further primality testing shall be performed. This standard allows two 
alternatives for testing primality: either using several iterations of only the Miller-Rabin test or 
using the iterated Miller-Rabin test followed by a single Lucas test. The value of iterations (as 
used in Appendices B.3.1 and B.3.2) depends on the algorithm being used, the security strength, 
the error probability used, the length (in bits) of the candidate prime, and the type of tests to be 
performed. Table B.1 lists the minimum number of iterations of the Miller-Rabin tests that shall 
be performed. If a prime is used that is not shown in the table, the minimum number of iterations 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

57 

of the Miller-Rabin tests needed can be computed using the algorithm given in Appendix C.1.   
As stated in Appendix C, if the definition of the error probability that led to the values of the 
number of Miller-Rabin tests for p and q in Table B.1 is not conservative enough, the prescribed 
number of Miller-Rabin tests can be followed by a single Lucas test. Since there are no known 
non-prime values that pass the two-test combination (i.e., the indicated number of rounds of the 
Miller-Rabin test with randomly selected bases followed by one round of the Lucas test), the 
two-test combination may provide additional assurance of primality over the use of only the 
Miller-Rabin test. However, the Lucas test is not required when testing the p1, p2, q1, and q2 
values for primality when generating RSA primes. See Appendix C for further information. 
 
Table B.1.  Minimum number of rounds of M-R testing when generating primes for use in 
RSA Digital Signatures (see Appendix C) 

Parameters M-R Tests Only M-R Tests Only 

p1, p2, q1 and q2 > 140 bits 
p and q: 1024 bits 

 

Error probability = 2-100 
For p1, p2, q1 and q2: 32 

For p and q: 4 

Error probability = 2-112 
For p1, p2, q1 and q2: 38 

For p and q: 5  

p1, p2, q1 and q2 > 170 bits 
p and q: 1536 bits 

 

Error probability = 2-100 
For p1, p2, q1 and q2: 27 

For p and q: 3 

Error probability = 2 –128 
For p1, p2, q1 and q2: 41 

For p and q: 4 

p1, p2, q1 and q2 > 200 bits 
p and q: 2048 bits 

 

Error probability = 2-100 
For p1, p2, q1 and q2: 22 

For p and q: 2 

Error probability = 2 –144 
For p1, p2, q1 and q2: 44 

For p and q: 4 

 

B.3.1 Miller-Rabin Probabilistic Primality Test 
Let DRBG be an approved deterministic random bit generator. 

Input:  
1. w The odd integer to be tested for primality. This will be either p or 

q, or one of the auxiliary primes p1, p2, q1, or q2. 
2. iterations The number of iterations of the test to be performed; the value 

shall be consistent with Table B.1.  
Output:  

1. status The status returned from the validation procedure where status is 
either PROBABLY PRIME or COMPOSITE. 

Process: 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

58 

1. Let a be the largest integer such that 2a divides w−1.   

2. m = (w−1) / 2a.  
3. wlen = len (w). 
4. For i = 1 to iterations do 

4.1 Obtain a string b of wlen bits from a DRBG. Convert b to an integer using the 
algorithm in B.2.1. 

4.2 If ((b ≤ 1) or (b ≥ w − 1)), then go to step 4.1. 
4.3 z = bm mod w. 

4.4 If ((z = 1) or (z = w − 1)), then go to step 4.7. 

4.5 For j = 1 to a − 1 do. 
4.5.1 z = z2 mod w. 

4.5.2 If (z = w − 1), then go to step 4.7. 
4.5.3 If (z = 1), then go to step 4.6. 

4.6 Return COMPOSITE. 
4.7 Continue.  

5. Return PROBABLY PRIME. 

B.3.2 Enhanced Miller-Rabin Probabilistic Primality Test 
This method provides additional information when an error is encountered that may be useful 
when generating or validating RSA moduli. Let DRBG be an approved deterministic random bit 
generator. 

Input:  
1. w The odd integer to be tested for primality. This will be either p or 

q, or one of the auxiliary primes p1, p2, q1, or q2. 
2. iterations The number of iterations of the test to be performed; the value 

shall be consistent with Table B.1. 
Output:  

1. status The status returned from the validation procedure where status is 
either PROBABLY PRIME, PROVABLY COMPOSITE 
WITH FACTOR (returned with the factor), or PROVABLY 
COMPOSITE AND NOT A POWER OF A PRIME. 

 
Process: 

1. Let a be the largest integer such that 2a divides w–1.   



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

59 

2. m = (w – 1) / 2a.  
3. wlen = len (w). 
4. For i = 1 to iterations do 

4.1 Obtain a string b of wlen bits from a DRBG. Convert b to an integer using the 
algorithm in B.2.1. 

4.2 If ((b ≤ 1) or (b ≥ w – 1)), then go to step 4.1. 
4.3 g = GCD(b, w). 
4.4 If (g > 1), then return PROVABLY COMPOSITE WITH FACTOR and the 

value of g. 
4.5 z = bm mod w. 
4.6 If ((z = 1) or (z = w – 1)), then go to step 4.15. 
4.7 For j = 1 to a – 1 do. 

4.7.1 x = z.   
4.7.2 z = x2 mod w. 
4.7.3 If (z = w – 1), then go to step 4.15. 
4.7.4 If (z = 1), then go to step 4.12. 

4.8 x = z. Comment: x = b(w–1)/2 mod w and x ≠ w – 1. 
4.9 z = x2 mod w. 
4.10 If (z = 1), then go to step 4.12. 

4.11 x = z. Comment: x = b(w–1) mod w and x ≠ 1. 
4.12 g = GCD(x – 1, w). 
4.13 If (g > 1), then return PROVABLY COMPOSITE WITH FACTOR and the 

value of g. 
4.14 Return PROVABLY COMPOSITE AND NOT A POWER OF A PRIME. 
4.15  Continue.  

5. Return PROBABLY PRIME. 

B.3.3 (General) Lucas Probabilistic Primality Test 
The following process or its equivalent shall be used as the Lucas test.  

Input:  
C The candidate odd integer to be tested for primality. 

Output:  
status Where status is either PROBABLY PRIME or COMPOSITE. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

60 

Process: 
1. Test whether C is a perfect square (see Appendix B.4). If so, return (COMPOSITE). 

2. Find the first D in the sequence {5, –7, 9, –11, 13, –15, 17, …} for which the Jacobi 
symbol �𝐷𝐷

𝐶𝐶
� = −1  and 𝐆𝐆𝐆𝐆𝐆𝐆�𝐶𝐶, 1−𝐷𝐷

4
� = 1. See Appendix B.5 for an approved method 

to compute the Jacobi Symbol. If �𝐷𝐷
𝐶𝐶
� = 0 for any D in the sequence, return 

(COMPOSITE). 
3. K = C + 1. 

4. Let Kr Kr – 1 … K0 be the binary expansion of K, with Kr  = 1. 

5. Set Ur = 1 and Vr = 1. 
6. For i = r – 1 to 0, do 

6.1 Utemp  = Ui+1 Vi+1 mod C. 

6.2 Vtemp  =𝑉𝑉𝑖𝑖+1
2 +𝐷𝐷𝑈𝑈𝑖𝑖+1

2

2
  mod C.  

6.3 If (Ki = 1), then  

6.3.1 Ui =
𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2
  mod C. 

6.3.2 Vi =
𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝐷𝐷𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2
 mod C. 

Else 
6.3.3 Ui = Utemp. 
6.3.4 Vi = Vtemp. 

7. If (U0 = 0), then return (PROBABLY PRIME). Otherwise, return (COMPOSITE). 
Steps 6.2, 6.3.1, and 6.3.2 contain expressions of the form A/2 mod C, where A is an integer, and 
C is an odd integer. If A/2 is not an integer (i.e., A is odd), then A/2 mod C may be calculated as 
(A+C)/2 mod C. Alternatively, A/2 mod C = A·(C+1)/2 mod C for any integer A without regard 
to A being odd or even. 

B.4 Checking for a Perfect Square 
The following algorithm may be used to determine whether an n-bit positive integer C is a 
perfect square. The algorithm is given for reference purposes. Other algorithms that produce an 
equivalent result may be used. 
Input: 

C The integer to be checked. 
Output: 

status Where status is either PERFECT SQUARE or NOT A PERFECT SQUARE. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

61 

Process: 

1. Set n, such that 2n > C ≥ 2(n−1). 

2. m =  n/2. 
3. i = 0. 

4. Select X0, such that 2m > X0 ≥ 2(m−1). 
5. Repeat 

5.1 i = i + 1. 
5.2 Xi = ((Xi–1)2 + C)/(2Xi–1). 

Until (Xi)2 < 2m + C. 

6. If C =  Xi  2, then 
  status = PERFECT SQUARE. 
 Else 
  status = NOT A PERFECT SQUARE. 
7. Return status. 

Notes: 

1. By starting with X0 > (1/2) Sqrt(C),  X0 − Sqrt(C)is guaranteed to be less than X0. This 
inequality is maintained in step 5; i.e., Xi − Sqrt(C)< Xi for all i. 

2. For i ≥ 1, 0 ≤ Xi − Sqrt(C) = (Xi–1 − Sqrt(C))2 / (2 Xi–1) < X0/2i. 

In particular, 0 ≤ Xm − Sqrt(C) < 1. If Sqrt(C) were an integer, then it would 
be equal to the floor of Xm. 

3. In general, the inequality Xi − Sqrt(C) < 1 will occur for values of i that are much less 
than m. To detect this, the fact that 2(m−1) ≤ Sqrt(C) < Xi for all i ≥ 1 can be used, 

      Xi − Sqrt(C) = ((Xi)2 − C)/( Xi + Sqrt(C))  

      ≤ ((Xi)2 − C)/( 2 Sqrt(C))  

      ≤  ((Xi)2 − C)/(2m) 

Thus, the condition (Xi)2 < 2m + C implies that Xi − Sqrt(C) < 1. 

B.5 Jacobi Symbol Algorithm 

This routine computes the Jacobi symbol �𝑎𝑎
𝑛𝑛
�. 

Jacobi( ): 
Input: 

a Any integer. For this standard, the initial value is in the sequence {5, –7, 9, –11, 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

62 

13, –15, 17, …} as determined by Appendix B.3.3.  

n Any integer. For this standard, the initial value is the candidate being tested as 
determined by Appendix B.3.3. 

Output: 
result The calculated Jacobi symbol. 

Process: 
1. a = a mod n. 
2. If a = 1, or n = 1, then return (1). 
3. If a = 0, then return (0). 

4. Define e and a1 such that a = 2e a1, where a1 is odd. 
5. If e is even, then s = 1. 

Else if ((n ≡ 1 mod 8) or (n ≡ 7 mod 8)), then s = 1. 
Else if ((n ≡ 3 mod 8) or (n ≡ 5 mod 8), then s = –1. 

6. If ((n ≡ 3 mod 4) and (a1 ≡ 3 mod 4)), then s = –s. 
7. n1 = n mod a1. 
8. Return (s × Jacobi (n1, a1)).  

Comment: Call this routine recursively. 
Example:  Compute the Jacobi symbol for a = 5 and n = 3439601197: 

1. n is not 1, and a is not 1, so proceed to Step 2. 
2. a is not 0, so proceed to Step 3. 
3. 5 = 20 × 5, so e = 0, and a1 = 5. 
4. e is even, so s = 1. 
5. a1 is not congruent to 3 mod 4, so do not change s. 
6. n1 = 2 = n mod 5. 
7. Compute and return (1 × Jacobi(2, 5)). This calls Jacobi recursively. Compute the Jacobi 

symbol for a = 2 and n = 5: 
7.1 n is not 1, and a is not 1, so proceed to Step 7.2. 
7.2 a is not 0, so proceed to Step 7.3. 
7.3 2 = 21 × 1, so e = 1, and a1 = 1. 

7.4 e is odd, and n ≡ 5 mod 8, so set s = –1. 
7.5 n is not 3 mod 4, and a1 is not 3 mod 4, so proceed to step 7.6. 
7.6 n1 = 0 = n mod 1. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

63 

7.7 Return (–1 × Jacobi(0, 1) = –1). This calls Jacobi recursively. Compute the Jacobi 
symbol for a = 0 and n = 1: 
7.7.1 n = 1, so return 1. 

Thus, Jacobi (0, 1) = 1, so Jacobi (2, 5) = –1×(1) = –1, and Jacobi (5,  3439601197) = 1× (–1) = –
1. 

B.6 Shawe-Taylor Random_Prime Routine 
This routine is recursive and may be used to construct a provable prime number using a hash 
function. 
Let Hash( ) be the selected hash function and let hashlen be the length (in bits) of each output 
block of the hash function. The following process or its equivalent shall be used to generate a 
prime number for this constructive method. 
ST_Random_Prime ( ): 

Input:  

1. length The length of the prime to be generated. 

2. input_seed The seed to be used for the generation of the requested prime. 

Output:  
1. status The status returned from the generation routine where status is 

either SUCCESS or FAILURE. If FAILURE is returned, then 
zeros are returned as the other output values. 

2. prime The requested prime. 
3 prime_seed A seed determined during generation. 
4. prime_gen_counter (Optional) A counter determined during the generation of the 

prime. 
Process: 

1. If (length < 2), then return (FAILURE, 0, 0 {, 0}). 

2. If (length ≥ 33), then go to step 14. 
3. prime_seed = input_seed. 
4. prime_gen_counter = 0. 

Comment: Steps 5 through 7 generate a 
pseudorandom integer c of length bits. 

5. c = Hash(prime_seed) ⊕ Hash(prime_seed + 1). 
6. c = 2length – 1 + (c mod 2length – 1). 

7. c = (2 × c / 2 ) + 1.  



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

64 

Comment: The next steps set prime to the 
least odd integer greater than or equal to c. 

8. prime_gen_counter = prime_gen_counter + 1. 
9. prime_seed = prime_seed + 2. 
10. Perform a deterministic primality test on c. For example, since c is small, its primality 

can be tested by trial division. See Appendix B.7. 
11. If (c is a prime number), then  

11.1 prime = c. 
11.2 Return (SUCCESS, prime, prime_seed {, prime_gen_counter}). 

12. If (prime_gen_counter > (4 × length)), then return (FAILURE, 0, 0 {, 0}). 
13. Go to step 5. 

14. (status, c0, prime_seed, prime_gen_counter) =  (ST_Random_Prime (( length / 2 + 
1), input_seed). 

15. If FAILURE is returned, return (FAILURE, 0, 0 {, 0}). 

16. iterations = length / hashlen – 1. 
17. old_counter = prime_gen_counter. 

Comment: Steps 18 through 21 generate a 
pseudorandom integer x in the interval 
[2length – 1, 2length]. 

18. x = 0. 
19. For i = 0 to iterations do 

x = x + (Hash(prime_seed + i) × 2i × hashlen).  

20. prime_seed = prime_seed + iterations + 1. 
21. x = 2length – 1 + (x mod 2length – 1). 

Comment: Steps 22 through 25 generate a 
candidate prime c in the interval [2length – 1, 
2length]. 

22. t = x / (2c0). 

23. If (2tc0 + 1 > 2length), then t = 2length – 1 / (2c0). 
24. c = 2tc0 + 1. 
25. prime_gen_counter = prime_gen_counter + 1. 

Comment: The remaining steps test the 
candidate prime c for primality. 

26. a = 0. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

65 

27. For i = 0 to iterations do 
a = a + (Hash(prime_seed + i) × 2 i × hashlen). 

28. prime_seed = prime_seed + iterations + 1. 
29. a = 2 + (a mod (c – 3)). 
30. z = a2t mod c. 

31. If ((1 = GCD(z – 1, c)) and (1 = 𝑧𝑧𝑐𝑐0 mod c)), then  
31.1 prime = c. 
31.2 Return (SUCCESS, prime, prime_seed {, prime_gen_counter}). 

32. If (prime_gen_counter ≥ ((4 × length) + old_counter)), then return (FAILURE, 0, 0 
{, 0}). 

33. t = t + 1. 
34. Go to step 23. 

B.7 Trial Division 
An integer is proven to be prime by showing that it has no prime factors less than or equal to its 
square root. This procedure is not recommended for testing any integers longer than 10 digits. 
To prove that c is prime:  

1. Prepare a table of primes less than or equal to √𝑐𝑐. This can be done by applying the sieve 
procedure in Appendix B.8. 

2. Divide c by every prime in the table. If c is divisible by one of the primes, then declare that c 
is composite and exit. If convenient, c may be divided by composite numbers. For example, 
rather than preparing a table of primes, it might be more convenient to divide by all integers 
except those divisible by 3 or 5 (and then check if c is divisible by 3 or 5).   

 Alternatively, rather than checking if an integer n divides c, computing GCD(n, c) may be 
more efficient.   

3. Otherwise, declare that c is prime and exit. 
B.8 Sieve Procedure 

A sieve procedure is described as follows: given a sequence of integers Y0, Y0 + 1, … , Y0 + J, a 
sieve will identify the integers in the sequence that are divisible by primes up to some selected 
limit. 
Note that the definitions of the mathematical symbols in this process (e.g., h, L, M, p) are internal 
to this process only and should not be confused with their use elsewhere in this standard. 
Start by selecting a factor base of all the primes pj from 2 up to some selected limit L. The value 
of L is arbitrary and may be determined by computer limitations. A good, typical value of L 
would be anywhere from 103 to 105.  



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

66 

1. Compute Sj =Y0 mod pj for all pj in the factor base.  
2. Initialize an array of length J + 1 to zero.  
3. Starting at Y0 – Sj + pj , let every pjth element of the array be set to 1 (including the first 

element of the array if Sj = 0). Do this for the entire length of the array and for every j.    

4. When finished, if the index i of the array is set to 1, then 𝑌𝑌0 + 𝑝𝑝 − 1 is divisible by some 
small prime and is therefore composite.   

The array can be either a bit array for compactness when memory is small or a byte array for 
speed when memory is readily available. There is no need to sieve the entire sieve interval at 
once. The array can be partitioned into suitably small pieces, sieving each piece before going on 
to the next piece. When finished, every location with the value 0 is a candidate for prime testing. 
The amount of work for this procedure is approximately M log log L, where M is the length of 
the sieve interval. This is a very efficient procedure for removing composite candidates for 
primality testing. If L = 105, the sieve will remove about 96 % of all composites. 
In some cases, rather than having a set of consecutive integers to sieve, the set of integers to be 
tested consists of integers lying in an arithmetic progression Y0, Y0 + h, Y0 + 2h, …, Y0 + Jh, 
where h is large and not divisible by any primes in the factor base.  

1. Select a factor base and initialize an array of length J + 1 to 0.  
2. Compute Sj =Y0 mod pj for all pj in the factor base.  
3. Compute Tj = h mod pj and r = – Sj Tj – 1 mod pj.  
4. Starting at Y0 + r, let every pjth element of the array be set to 1 (including the first element 

of the array if Sj = 0). Do this for the entire length of the array and for every j. Note that 
the position Y0 + r in the array actually denotes the number Y0 + rh. 

5. When finished, if the index i of the array is set to 1, then 𝑌𝑌0 + (𝑝𝑝 − 1)ℎ is divisible by 
some small prime and is therefore composite.   

Note: The prime “2” takes the longest amount of time (M/2) to sieve since it touches the most 
locations in the sieve array. An easy optimization is to combine the initialization of the sieve 
array with the sieving of the prime “2.” It is also possible to sieve the prime “3” during 
initialization. These optimizations can save about 1/3 of the total sieve time. 

B.9 Compute a Probable Prime Factor Based on Auxiliary Primes 
This routine constructs a probable prime (a candidate for p or q) using two auxiliary prime 
numbers and the Chinese Remainder Theorem (CRT).  

Input: 
r1 and r2 Two odd prime numbers satisfying  

len(r1)+len(r2) ≤ (nlen/2) – log2(nlen/2) – 7. 
 If the constructed probable prime must satisfy the additional c mod 

8 requirement (see below), then the size restriction on r1 and r2 

becomes len(r1)+len(r2) ≤ (nlen/2) – log2(nlen/2) – 10.   



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

67 

nlen The desired length of n, the RSA modulus. 
e The public verification exponent. 
security_strength The minimum security strength required for random number 

generation. 
c (An optional parameter) A number from the set {1, 3, 5, 7} that 

may be used to add the further requirement that the computed 
prime is equal to c mod 8.   

Output: 
status The status returned from the generation procedure, where status is 

either SUCCESS or FAILURE. If FAILURE is returned, then 
zeros are returned as the other output values. 

private_prime_factor The prime factor of n. 
X The random number used during the generation of the 

private_prime_factor. 
Process: 

1. If GCD(2r1, r2) ≠ 1, then return (FAILURE, 0, 0). 
2. R = ((r2–1 mod 2r1) × r2) – (((2r1)–1 mod r2) × 2r1). 

Comment: Apply the CRT so that R ≡ 1 mod 
2𝑝𝑝1 and R ≡ –1 mod 𝑝𝑝2. 

3. Generate a random number X using an approved random bit generator that supports 
the security_ strength, such that √2�2𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛/2−1� ≤ 𝑋𝑋 ≤ �2𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛/2 − 1�. 

4. Y = X + ((R – X) mod 2r1r2). Comment: Y is the first odd integer ≥ X, 
such that r1 is a prime factor of Y–1, and r2 
is a prime factor of Y+1. 

 4.1 If there is an additional requirement that the computed prime is equal to c mod 8, 
then set Y to the only element of the following values {Y, Y + 2r1r2, Y + 4r1r2, Y + 
6r1r2} that is equal to c mod 8. 

Comment: The next steps determine the 
requested prime number by constructing 
candidates from a sequence and performing 
primality tests. 

5. i = 0. 
6. If (Y ≥ 2nlen/2), then go to step 3. 
7. If (GCD(Y–1, e) = 1), then 

7.1 Check the primality of Y as specified in Appendix B.3. If PROBABLY PRIME 
is not returned, go to step 8. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

68 

7.2 private_prime_factor = Y. 
7.3 Return (SUCCESS, private_prime_factor, X). 

8. i = i + 1. 
9. If (i ≥ 20(nlen/2)), then return (FAILURE, 0, 0). 

10. If the Y ≡ c mod 8 condition is required then Y = Y + (8r1r2), 
 Else Y = Y + (2r1r2). 
11. Go to step 6. 

B.10 Construct a Provable Prime (Possibly with Conditions) Based on 
Contemporaneously Constructed Auxiliary Provable Primes 

The following process (or its equivalent) shall be used to generate an L-bit provable prime p (a 
candidate for one of the prime factors of an RSA modulus). Note that the use of p in this 
specification is used generically; both RSA prime factors p and q may be generated using this 
method. 
If a so-called “strong prime” is required, this process can generate primes p1 and p2 (of specified 
bit-lengths N1 and N2) that divide p − 1 and p + 1, respectively. The resulting prime p will satisfy 
the conditions traditionally required of a strong prime, provided that the requested bit-lengths for 
p1 and p2 have appropriate sizes.  
Regardless of the bit-lengths selected for p1 and p2, the quantity p − 1 will have a prime divisor 
p0 whose bit-length is slightly more than half that of p. In addition, the quantity p0 −1 will have a 
prime divisor whose bit-length is slightly more than half that of p0.  

This algorithm requires that N1 + N2 ≤ L – L/2 – 4. Values for N1 and N2 should be chosen such 
that N1 + N2 ≤ (L/2) – log2(L) – 7 to ensure that the algorithm can generate as many as 5L distinct 
candidates for p. 
Let Hash be the selected hash function to be used, and let hashlen be the length (in bits) of each 
output block of the hash function. 
Provable_Prime_Construction(): 

Input: 
1. L A positive integer equal to the requested bit-length for p. Note that 

acceptable values for L = nlen/2 are computed as specified in 
Appendix B.3.1, criteria 2(b) and (c), with nlen assuming a value 
specified in Table B.1.  

2. N1 A positive integer equal to the requested bit-length for p1. If N1 ≥ 
2, then p1 is an odd prime of N1 bits; otherwise, p1 = 1. Acceptable 
values for N1 ≥ 2 are provided in Table A.1 

3. N2 A positive integer equal to the requested bit-length for p2. If N2 ≥ 
2, then p2 is an odd prime of N2 bits; otherwise, p2 = 1. 
Acceptable values for N2 ≥ 2 are provided in Table A.1 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

69 

4. firstseed A bit string equal to the first seed to be used. 
5. e The public verification exponent. 

Output:  
1. status The status returned from the generation procedure, where status is 

either SUCCESS or FAILURE. If FAILURE is returned, then 
zeros are returned as the other output values. 

2. p, p1, p2 The required prime p, along with p1 and p2 having the property that 
p1 divides p − 1 and  p2 divides p + 1. 

3. pseed A seed determined during generation. 
 

Process: 
1. If L, N1, and N2 are not acceptable, then return (FAILURE, 0, 0, 0, 0). 

Comment: Generate p1 and p2, as well as the 
prime p0. 

2. If N1 = 1, then  
2.1 p1 = 1. 
2.2 p2seed = firstseed.  

3. If N1 ≥ 2, then  
3.1 Using N1 as the length and firstseed as the input_seed, use the random prime 

generation routine in Appendix B.6 to obtain p1 and p2seed.   
3.2 If FAILURE is returned, then return (FAILURE, 0, 0, 0, 0). 

4. If N2 = 1, then  
4.1 p2 = 1. 
4.2 p0seed = p2seed.  

5. If N2 ≥ 2, then 
5.1 Using N2 as the length and p2seed as the input_seed, use the random prime 

generation routine in Appendix B.6 to obtain p2 and p0seed.  
5.2 If FAILURE is returned, then return (FAILURE, 0, 0, 0, 0). 

6. Using L / 2 + 1 as the length and p0seed as the input_seed, use the random prime 
generation routine in Appendix B.6 to obtain p0 and pseed. If FAILURE is returned, 
then return (FAILURE, 0, 0, 0, 0). 

Comment: Generate a (strong) prime p in 
the interval [( 2 )(2L−1), 2L −1]. 

7. If GCD(p0p1, p2) ≠ 1, then return (FAILURE, 0, 0, 0, 0). 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

70 

8. iterations = L / hashlen −1. 
9. pgen_counter = 0. 

Comment: Generate pseudo-random x in the 
interval [( 2 )(2L−1) − 1, 2L − 1].  

10. x = 0. 
11. For i = 0 to iterations do 

 x = x + (Hash(pseed + i))× 2 i × hashlen. 
12. pseed = pseed + iterations + 1.  

13. x = ( 2 )(2L−1) + ( x mod (2L − ( )(2L−1) ) ). 

Comment: Generate a candidate for the 
prime p. 

14. Compute y in the interval [1, p2] such that ( y p0 p1 – 1)  = 0 mod p2 (the inverse 
algorithm of B.1 may be used). 

15. t = ((2 y p0 p1) + x)/(2 p0 p1 p2).  

16. If ((2(t p2 − y) p0 p1 + 1) > 2L), then   

  t = ( (2 y p0 p1) + ( )(2L−1) ) / (2 p0 p1 p2).  

Comment: p satisfies 
0 = ( p–1) mod (2p0 p1) and   
0 = ( p+1) mod p2. 

17. p = 2(t p2 − y) p0 p1 + 1. 
18. pgen_counter = pgen_counter + 1.  
19. If (GCD(p – 1, e) = 1), then 

Comment: Choose an integer a in the 
interval [2, p – 2]. 

19.1 a = 0 
19.2 For i = 0 to iterations do  

a = a + (Hash(pseed + i))× 2 i × hashlen. 
19.3 pseed = pseed + iterations + 1. 
19.4 a = 2 + (a mod (p – 3)). 

Comment: Test p for primality: 

19.5  z = a2(t p2 − y) p1  mod p. 
19.6 If 1 = GCD(z – 1, p) and 1 = z p0  mod p, then return (SUCCESS, p, p1, p2, 

pseed). 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

71 

20. If pgen_counter ≥ 5L, then return (FAILURE, 0, 0, 0, 0). 
21. t = t + 1. 
22. Go to step 16. 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

72 

Appendix C: Calculating the Required Number of Rounds of Testing 
Using the Miller-Rabin Probabilistic Primality Test 

(Informative) 

C.1  The Required Number of Rounds of the Miller-Rabin Primality Tests  
The ideas of [26] were applied to estimate pk,t , the probability that an odd k-bit integer that 
passes t rounds of Miller-Rabin (M-R) testing is actually composite. The probability pk,t is 
understood as the ratio of the number of odd composite numbers of a binary length k that can be 
expected to pass t rounds of M-R testing (with randomly generated bases) to the sum of that 
value and the number of odd prime integers of binary length k. This is equivalent to assuming 
that candidates selected for testing will be chosen uniformly at random from the entire set of odd 
k-bit integers. Following Pomerance et al., pk,t can be (over) estimated by the ratio of the 
expected number of odd composite numbers of binary length k that will pass t rounds of M-R 
testing (with randomly generated bases) to the total number of odd primes of binary length k. 
From the perspective of a party charged with the responsibility of generating a k-bit prime, the 
objective is to determine a value of t such that pk,t is no greater than an acceptably small target 
value ptarget. 

Using [26], it is possible to compute an upper bound for 𝑝𝑝𝑘𝑘,𝑡𝑡 as a function of k and t. From this, 
an upper bound can be computed for t as a function of k and ptarget, the maximum allowed 
probability of accidentally generating a composite number. The following is an algorithm for 
computing t:   

1. For t = 1, 2 … –log2(ptarget)/2  

1.1 For M = 3, 4 …�2√𝑑𝑑 − 1 − 1�    (1) 

1.1.1 Compute 𝑝𝑝𝑘𝑘,𝑡𝑡 as in (2). 

1.1.2 If pk,t ≤ ptarget  
1.1.2.1 Accept t.  
1.1.2.2 Stop. 

In (1), k is the bit length of the candidate primes, and (2) is as follows: 

𝑝𝑝𝑘𝑘,𝑡𝑡 = 2.00743 ∙ ln (2) ∙ 𝑑𝑑 ∙ 2−𝑘𝑘 �2𝑘𝑘−2−𝑀𝑀𝑡𝑡 + 8(𝜋𝜋2−6)
3

2𝑘𝑘−2 ∑ 2𝑚𝑚−(𝑚𝑚−1)𝑡𝑡 ∑ 1
2(𝑗𝑗+(𝑘𝑘−1)/𝑗𝑗)

𝑚𝑚
𝑗𝑗=2

𝑀𝑀
𝑚𝑚=3 �.  (2) 

Using this expression for t, the following methodologies are used for testing the RSA candidate 
primes. 
WARNING: Care must be taken when using the phrase “error probability” in connection with 
the recommended number of rounds of M-R testing. The probability that a composite number 
survives t rounds of Miller-Rabin testing is not the same as pk,t , which is the probability that a 
number surviving t rounds of Miller-Rabin testing is composite. Ordinarily, the latter probability 
is the one that should be of most interest to a party responsible for generating primes, while the 
former may be more important to a party responsible for validating the primality of a number 



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

73 

generated by someone else. However, for sufficiently large k (e.g., k ≥ 51), it can be shown that 
pk,t ≤ 4–t under the same assumptions concerning the selection of candidates as those made to 
obtain formula (2) (see [26]). In such cases, t = –log2(ptarget)/2 rounds of Miller-Rabin testing 
can be used to both generate and validate primes with ptarget serving as an upper bound on both 
the probability that the generation process yields a composite number and the probability that a 
composite number would survive an attempt to validate its primality. 

C.2  Generating Primes for RSA Signatures  
When generating primes for the RSA signature algorithm, it is still very important to reduce the 
probability of errors in the M-R testing procedure. However, since the (probable) primes are used 
to generate a user’s key pair, if a composite number survives the testing process, the 
consequences of the error may be less dramatic than in the case of generating DSA domain 
parameters; only one user’s transactions are affected rather than a domain of users. Furthermore, 
if the p or q value generated for some user is composite, the problem will not be undiscovered 
for long since it is almost certain that signatures generated by that user will not be verifiable. 
Therefore, when generating the RSA primes p and q, it is sufficient to use the number of rounds 
derived from (1) and (2) in Appendix C.1 as the minimum number of M-R tests to be performed. 
However, if the definition of pk, t is not considered to be sufficiently conservative when testing p 
and q, it is recommended that the t rounds of Miller-Rabin tests be followed by a single Lucas 
test. 
The lengths for p and q that are recommended for use in RSA signature algorithms are at least 
1024 bits. Recall that n = pq, so the corresponding lengths for n are the sum of the lengths of p 
and q. The security strengths for various sizes of n are provided in SP 800-57, Part 1. Hence, it 
makes sense to match the number of rounds of Miller-Rabin testing to the target error probability 
values of 2–s, where s is the security strength for an n-bit modulus. A probability of 2–100 is 
included for all prime lengths since this probability has often been used in the past and may be 
acceptable for many applications.  
When generating the RSA primes p and q with conditions, it is sufficient to use the value t 
derived from (1) and (2) as the minimum number of M-R tests to be performed when generating 
the auxiliary primes p1, p2, q1, and q2. It is not necessary to use an additional Lucas test on these 
numbers. In the extremely unlikely event that one of the numbers p1, p2, q1, or q2 is composite, 
there is still a high probability that the corresponding RSA prime (p or q) will satisfy the 
requisite conditions. 
The sizes of p1, p2, q1, and q2 were chosen to ensure that, for an adversary with significant but 
not overwhelming resources, Lenstra’s elliptic curve factoring method [27] (against which there 
is no protection beyond choosing large p and q) is a more effective factoring algorithm than the 
Pollard P–1 method [27], the Williams P+1 method [28], or various cycling methods [27]. For an 
adversary with overwhelming resources, the best all-purpose factoring algorithm is assumed to 
be the General Number Field Sieve [27]. 
Table B.1 in Appendix B.3 specifies the minimum number of rounds of M-R testing when 
generating primes to be used in the construction of RSA signature key pairs.   



FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

74 

Appendix D: References 

[1] Moriarty K (ed.), Kaliski B, Jonsson J, Rusch A (2016) PKCS #1: RSA Cryptography 
Specifications Version 2.2.  (Internet Engineering Task Force (IETF)), IETF Request for 
Comments (RFC) 8017. https://doi.org/10.17487/RFC8017 

[2] Public Key Cryptography Standard (PKCS) #1, RSA Encryption Standard. 
[3] Accredited Standards Committee X9 (2005) Public Key Cryptography for the Financial 

Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA). (American 
National Standards Institute), American National Standard for Financial Services (ANS) 
X9.62-2005, Withdrawn. 

[4] Pornin T (2013) Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic 
Curve Digital Signature Algorithm (ECDSA).  (Internet Engineering Task Force (IETF)), 
IETF , Request for Comments (RFC) 6979. https://doi.org/10.17487/RFC6979 

[5] Chen L, Moody D, Regenscheid A, Robinson A, Randall K (2023) Recommendations for 
Discrete-Logarithm Based Cryptography: Elliptic Curve Domain Parameters. (National 
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 
800-186. https://doi.org/10.6028/NIST.SP.800-186 

[6] Josefsson S, Liusvaara I (2017) Edwards-Curve Digital Signature Algorithm (EdDSA). 
(Internet Research Task Force (IRTF)), IRTF Request for Comments (RFC) 8032.  
https://doi.org/10.17487/RFC8032 

[7] National Institute of Standards and Technology (2013) Digital Signature Standard (DSS). 
(U.S. Department of Commerce, Washington, DC),  Federal Information Processing 
Standards Publication (FIPS) 186-4. https://doi.org/10.6028/NIST.FIPS.186-4 

[8] Barker EB (2006) Recommendation for Obtaining Assurances for Digital Signature 
Applications. (National Institute of Standards and Technology, Gaithersburg, MD), NIST 
Special Publication (SP) 800-89. http://doi.org/10.6028/NIST.SP.800-89  

[9] Barker EB, Roginsky AL (2019) Transitioning the Use of Cryptographic Algorithms and 
Key Lengths. (National Institute of Standards and Technology, Gaithersburg, MD), NIST 
Special Publication (SP) 800-131A, Rev. 2. https://doi.org/10.6028/NIST.SP.800-131Ar2 

[10] National Institute of Standards and Technology (2015) Secure Hash Standard (SHS). (U.S. 
Department of Commerce, Washington, DC), Federal Information Processing Standards 
Publication (FIPS) 180-4. https://doi.org/10.6028/NIST.FIPS.180-4 

[11] National Institute of Standards and Technology (2015) SHA-3 Standard: Permutation-Based 
Hash and Extendable-Output Functions. (U.S. Department of Commerce, Washington, DC), 
Federal Information Processing Standards Publication (FIPS) 202. 
https://doi.org/10.6028/NIST.FIPS.202 

[12] Barker EB (2020) Recommendation for Key Management: Part 1 – General. (National 
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 
800-57 Part 1, Rev. 5. https://doi.org/10.6028/NIST.SP.800-57pt1r5 

[13] Barker EB (2009) Recommendation for Digital Signature Timeliness. (National Institute of 
Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-102. 
https://doi.org/10.6028/NIST.SP.800-102 

[14] Barker EB, Chen L, Roginsky AL, Vassilev A, Davis R, Simon S (2019) Recommendation 
for Pair-Wise Key-Establishment Using Integer Factorization Cryptography. (National 

https://doi.org/10.17487/RFC8017
https://doi.org/10.17487/RFC6979
https://doi.org/10.6028/NIST.SP.800-186
https://doi.org/10.17487/RFC8032
https://doi.org/10.6028/NIST.FIPS.186-4
http://doi.org/10.6028/NIST.SP.800-89
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-102


FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

75 

Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 
800-56B, Rev. 2. https://doi.org/10.6028/NIST.SP.800-56Br2 

[15] Barker EB, Dang QH (2015) Recommendation for Key Management, Part 3: Application-
Specific Key Management Guidance. (National Institute of Standards and Technology, 
Gaithersburg, MD), NIST Special Publication (SP) 800-57 Part 3, Rev. 1. 
https://doi.org/10.6028/NIST.SP.800-57pt3r1  

[16] Barker EB, Kelsey JM (2015) Recommendation for Random Number Generation Using 
Deterministic Random Bit Generators. (National Institute of Standards and Technology, 
Gaithersburg, MD), NIST Special Publication (SP) 800-90A, Rev. 1. 
https://doi.org/10.6028/NIST.SP.800-90Ar1 

[17] Ambrose C, Bos JW, Fay B, Joye M, Lochter M, Murray B (2017) Differential Attacks on 
Deterministic Signatures. RSA Conference Cryptographers’ Track, CT-RSA, (Springer, San 
Francisco, CA), LCNS, vol. 10808 pp.339-353.  https://doi.org/10.1007/978-3-319-76953-
0_18 

[18] Barenghi A, Pelosi G (2016) A Note on Fault Attacks Against Deterministic Signature 
Schemes. 11th International Workshop on Security, IWSEC 2016 (Springer, Tokyo, Japan),  
LNCS, vol. pp 182-192. https://doi.org/10.1007/978-3-319-44524-3_11 

[19] Biehl I, Meyer B, Müller V (2000) Differential Fault Attacks on Elliptic Curve 
Cryptosystems. 20th Annual International Cryptology Conference, CRYPTO 2000 
(Springer, Santa Barbara, CA), pp 131-146. https://doi.org/10.1007/3-540-44598-6_8 

[20] Biham E, Shamir A (1997) Differential fault analysis of secret key cryptosystems. 17th 
Annual International Cryptology Conference, CRYPTO '97 (Springer, Santa Barbara, CA), 
pp 513-525. https://doi.org/10.1007/BFb0052259 

[21] Boneh D, DeMillo RA, Lipton RJ (2001) On the Importance of Eliminating Errors in 
Cryptographic Computations. Journal of Cryptology 14(2):101-119. 
https://doi.org/10.1007/s001450010016 

[22] Poddebniak D, Somorovsky J, Schinzel S, Lochter M, Rösler P (2017) Attacking 
Deterministic Signature Schemes Using Fault Attacks. Cryptology ePrint Archive, 
2017/1014. https://ia.cr/2017/1014  

[23] Accredited Standards Committee X9 (2005) Prime Number Generation, Primality Testing 
and Primality Certificates. (American National Standards Institute), American National 
Standard for Financial Services (ANS) X9.80-2005, R2013. Available at 
https://webstore.ansi.org/Standards/ASCX9/ASCX9802005R2013 

[24] Knuth DE (1997) The Art of Computer Programming, Volume 2: Seminumerical 
Algorithms (Addison-Wesley, Boston, MA), 3rd Ed. 

[25] Baillie R, Wagstaff SS, Jr. (1980) Lucas Pseudoprimes. Mathematics of Computation 
35(152):1391-1417. Available at https://www.ams.org/journals/mcom/1980-35-152/S0025-
5718-1980-0583518-6/S0025-5718-1980-0583518-6.pdf 

[26] Damgård I, Landrock P, Pomerance C (1993) Average Case Error Estimates for the Strong 
Probable Prime Test. Mathematics of Computation 61(203):177-194. Available at 
https://www.ams.org/journals/mcom/1993-61-203/S0025-5718-1993-1189518-9/S0025-
5718-1993-1189518-9.pdf 

[27] Menezes AJ, van Oorschot PC, Vanstone SA (1996) Handbook of Applied Cryptography 
(CRC Press, Boca Raton, FL). Available at http://cacr.uwaterloo.ca/hac/ 

https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.6028/NIST.SP.800-57pt3r1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.1007/978-3-319-76953-0_18
https://doi.org/10.1007/978-3-319-76953-0_18
https://doi.org/10.1007/978-3-319-44524-3_11
https://doi.org/10.1007/3-540-44598-6_8
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/s001450010016
https://ia.cr/2017/1014
https://webstore.ansi.org/Standards/ASCX9/ASCX9802005R2013
https://www.ams.org/journals/mcom/1980-35-152/S0025-5718-1980-0583518-6/S0025-5718-1980-0583518-6.pdf
https://www.ams.org/journals/mcom/1980-35-152/S0025-5718-1980-0583518-6/S0025-5718-1980-0583518-6.pdf
https://www.ams.org/journals/mcom/1993-61-203/S0025-5718-1993-1189518-9/S0025-5718-1993-1189518-9.pdf
https://www.ams.org/journals/mcom/1993-61-203/S0025-5718-1993-1189518-9/S0025-5718-1993-1189518-9.pdf
http://cacr.uwaterloo.ca/hac/


FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

76 

[28] Williams HC (1982) A p+1 Method of Factoring. Mathematics of Computation 
39(159):225-234. Available at https://www.ams.org/journals/mcom/1982-39-159/S0025-
5718-1982-0658227-7/S0025-5718-1982-0658227-7.pdf 

  

https://www.ams.org/journals/mcom/1982-39-159/S0025-5718-1982-0658227-7/S0025-5718-1982-0658227-7.pdf
https://www.ams.org/journals/mcom/1982-39-159/S0025-5718-1982-0658227-7/S0025-5718-1982-0658227-7.pdf


FIPS 186-5 DIGITAL SIGNATURE STANDARD (DSS) 

 

77 

Appendix E: Revisions (Informative) 

Below is a summary of the main changes made in revising FIPS 186-4: 
 

• DSA is no longer approved for digital signature generation. DSA may be used to verify 
signatures generated prior to the implementation date of this standard. 

o The specifications and algorithms for DSA are no longer included in FIPS 186-5. 
They may be found in FIPS 186-4. 

• ANSI X9.31 was withdrawn, so X9.31 RSA signatures were removed from this standard. 
• ANSI X9.62 was removed, so new specifications for ECDSA were added to FIPS 186-5. 

Note: X9.62 will be replaced by X9.142 (under development). 
• Many elliptic curve details and algorithms from FIPS 186-4 will now be included in SP 

800-186. 
o Elliptic curves defined over binary curves (specified in SP 800-186) are now 

deprecated. 
• A new deterministic signature algorithm, EdDSA, is included, as is the prehash version. 
• A deterministic version of ECDSA is specified. 
• Larger modulus sizes are allowed for RSA (with updated tables A.1, B.1). 
• XOFs are allowed for use in ECDSA, RSASSA-PSS. 
• Constructing primes with congruence conditions mod 8 is allowed. 
• In B.3.1, the two most significant bits of p and q may be set arbitrarily. 
• Trial division before checking primality is allowed. 
• Updated algorithms are included in Appendices B and C to better prevent bias. 
• The option to generate elliptic curves (besides those specified in SP 800-186) is removed.  

Similarly, users are not given the option to generate their own base points on elliptic 
curves. 

 


	1. Introduction
	2. Glossary of Terms, Acronyms, and Mathematical Symbols
	2.1 Terms and Definitions
	2.2 Acronyms
	2.3 Mathematical Symbols

	3. General Discussion
	3.1 Initial Setup
	3.2 Digital Signature Generation
	3.3 Digital Signature Verification and Validation

	4 The Digital Signature Algorithm (DSA)
	5. The RSA Digital Signature Algorithm
	5.1 RSA Key Pair Generation
	5.2 RSA Key Pair Management
	5.3 Assurances
	5.4  PKCS #1
	5.4.1 Mask Generation Functions in RSASSA-PSS


	6.  The Elliptic Curve Digital Signature Algorithm (ECDSA)
	6.1 ECDSA Domain Parameters
	6.1.1 Domain Parameter Generation
	6.1.2 Domain Parameter Management

	6.2 Private/Public Keys
	6.2.1 Key Pair Generation
	6.2.2 Key Pair Management

	6.3 ECDSA Per-Message Secret Number Generation
	6.3.1 Generation of Per-Message Secret Number for ECDSA
	6.3.2 Generation of the Per-Message Secret Number for Deterministic ECDSA

	6.4 ECDSA Digital Signature Generation and Verification
	6.4.1 ECDSA Signature Generation Algorithm
	6.4.2 ECDSA Signature Verification Algorithm

	6.5 Assurances

	7. The Edwards-Curve Digital Signature Algorithm (EdDSA)
	7.1  EdDSA Parameters
	7.2  Encoding
	7.3  Decoding
	7.4 EdDSA Key Pair Generation
	7.5 Key Pair Management
	7.6 EdDSA Signature Generation
	7.7 EdDSA Signature Verification
	7.8 The Prehash Edwards-Curve Digital Signature Algorithm (HashEdDSA)
	7.8.1 HashEdDSA Signature Generation
	7.8.2 HashEdDSA Signature Verification
	7.8.3  Differences between EdDSA and HashEdDSA


	APPENDIX A: Key Pair Generation
	A.1 IFC Key Pair Generation
	A.1.1 Criteria for IFC Key Pairs
	A.1.2 Generation of Random Primes that are Provably Prime
	A.1.2.1 Get the Seed
	A.1.2.2 Construction of the Provable Primes p and q

	A.1.3 Generation of Random Primes that are Probably Prime
	A.1.4 Generation of Provable Primes with Conditions Based on Auxiliary Provable Primes
	A.1.5 Generation of Probable Primes with Conditions Based on Auxiliary Provable Primes
	A.1.6 Generation of Probable Primes with Conditions Based on Auxiliary Probable Primes

	A.2 ECC Key Pair Generation
	A.2.1 ECDSA Key Pair Generation using Extra Random Bits
	A.2.2 ECDSA Key Pair Generation by Rejection Sampling
	A.2.3 EdDSA Key Pair Generation

	A.3 ECDSA Per-Message Secret Number Generation
	A.3.1 Per-Message Secret Number Generation Using Extra Random Bits
	A.3.2 Per-Message Secret Number Generation of Private Keys by Rejection Sampling
	A.3.3  Per-Message Secret Number Generation for Deterministic ECDSA

	A.4 Random Values mod n
	A.4.1 Conversion of a Bit String to an Integer mod n via Modular Reduction
	A.4.2 Conversion of a Bit String to an Integer mod n via the Discard Method


	Appendix B: Generation of Other Quantities
	B.1 Computation of the Inverse Value
	B.2 Conversion between Bit Strings, Integers, and Octet Strings
	B.2.1 Conversion of a Bit String to an Integer
	B.2.2 Conversion of an Integer to a Bit String
	B.2.3  Conversion of an Integer to an Octet String
	B.2.4  Conversion of a Bit String to an Octet String

	B.3 Probabilistic Primality Tests
	B.3.1 Miller-Rabin Probabilistic Primality Test
	B.3.2 Enhanced Miller-Rabin Probabilistic Primality Test
	B.3.3 (General) Lucas Probabilistic Primality Test

	B.4 Checking for a Perfect Square
	B.5 Jacobi Symbol Algorithm
	B.6 Shawe-Taylor Random_Prime Routine
	B.7 Trial Division
	B.8 Sieve Procedure
	B.9 Compute a Probable Prime Factor Based on Auxiliary Primes
	B.10 Construct a Provable Prime (Possibly with Conditions) Based on Contemporaneously Constructed Auxiliary Provable Primes

	Appendix C: Calculating the Required Number of Rounds of Testing Using the Miller-Rabin Probabilistic Primality Test
	C.1  The Required Number of Rounds of the Miller-Rabin Primality Tests
	C.2  Generating Primes for RSA Signatures

	Appendix D: References
	Appendix E: Revisions (Informative)



