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ABSTRACT
A key issue in collaborative software development is communi-

cation among developers. One modality of communication is a

commit message, in which developers describe the changes they

make in a repository. As such, commit messages serve as an “audit

trail” by which developers can understand how the source code

of a project has changed—and why. Hence, the quality of com-

mit messages affects the effectiveness of communication among

developers. Commit messages are often of poor quality as devel-

opers lack time and motivation to craft a good message. Several

automatic approaches have been proposed to generate commit mes-

sages. However, these are based on uncurated datasets including

considerable proportions of poorly phrased commit messages. In

this multi-method study, we first define what constitutes a “good”

commit message, and then establish what proportion of commit

messages lack information using a sample of almost 1,600 messages

from five highly active open source projects. We find that an aver-

age of circa 44% of messages could be improved, suggesting the use

of uncurated datasets may be a major threat when commit message

generators are trained with such data. We also observe that prior

work has not considered semantics of commit messages, and there

is surprisingly little guidance available for writing good commit

messages. To that end, we develop a taxonomy based on recurring

patterns in commit messages’ expressions. Finally, we investigate

whether “good” commit messages can be automatically identified;

such automation could prompt developers to write better commit

messages.
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1 INTRODUCTION
Collaborative software development is an inherently social activity,

and is commonly facilitated through version control systems (VCS)

such as Git [75, 82]. A VCS maintains a record of code changes,

and manages simultaneous access to development artifacts [82].

Each commit should contain both changes to source code (and

other stored artifacts) and a message that explains what changes
are made, and why [13, 49]. Figure 1 shows an example of a commit

message from the Spring-boot project [64]. A well-written message

is needed to communicate the context of a change to collaborators

which allows them to review the change and understand its impact

[2, 69]. For long-lived projects, such as the Linux kernel, commit

messages might be the only source of information left for future

developers to understand what changes were made and why those

were made, when the original developers have left a project [68].

Software development is increasingly done in distributed set-

tings involving developers from many different cultures and back-

grounds. As well, in the past 20 years, commercial participation

in open source software (OSS) projects has increased dramatically

[77–79, 81], leading to further diversification in the developer work-

force on OSS projects that have become essential building blocks

for many software organizations. This in turn may further diversify

Add OAuth2 resource server sample

Shows how to use @EnableResourceServer in a pure resource 

server and configure the secure paths.

Commit: abd7bc0466722b2a6e2b145a630fdb342a7f1656

Date: Thu Oct 29 08:40:12 2015 +0000

Figure 1: Example of a commit message from Spring-boot
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the quality of commit messages as individual developers and orga-

nizations may exhibit different development cultures and habits.

Several researchers have found that the quality of commit mes-

sages in repositories varies due to a lack of motivation or time

[26, 44, 45, 47]. For example, previous studies observed that ca. 14%

of commit messages in over 23,000 OSS projects were completely

empty, 66% of the messages contained only a few words, and only

10% of commits had messages containing “normal” descriptive Eng-

lish sentences [26]. Chahal and Saini [14] proposed a syntactic

model to calculate the quality of commit messages. However, this

model can only assess the quality at the syntactic level through

evaluation of “rules,” such as “the first character of the subject line
should be capitalized” ; this model does not consider the semantics

of commit message contents. Further, developers may not know

what kind of information should be written to produce a good

commit message [68]. The practitioner community is keen to help

their contributors understand how to write a good commit message,

as evidenced by guidelines such as: “the commit message should
describe what changes our commit makes to the behavior of the code,
not what changed in the code” [51].

To help developers write commit messages (addressing a poten-

tial lack of motivation and time), several tools have been proposed

that can generate commit messages automatically [13, 18, 45]. Tools

like DeltaDoc [13] and ChangeScribe [18] can produce detailed mes-

sages based on the changes contained within a commit, that can

mainly answer what was changed. However, the generated mes-

sages cannot reveal why the change was necessary. Inspired by

previous observations that commit messages follow certain pat-

terns [49], recent approaches [38, 39, 45] generated commit mes-

sages from prior changes and their associated commit messages,

which may contain the rationale for any code changes. For those

approaches, the quality of generated commit messages relies on

messages of similar code changes in the training data. A major prob-

lem is that the quality of commit messages in OSS projects used in

training datasets for automatic generators might vary considerably.

Therefore, using low-quality commit messages in training datasets

introduces a major threat if these “poor” commit messages are not

filtered out. Moreover, when the generated messages are the same

or similar to the low-quality messages in testing datasets, automatic

tools may yield an artificially high precision. Unfortunately, many

models proposed thus far were trained and evaluated on datasets of

commit messages, which simply removed trivial messages without

paying attention to the content quality of these messages.

This state of affairs leaves a number of important open ques-

tions unanswered. First, (RQ1) to what extent do poorly composed

commit messages exist? To the best of our knowledge, no prior

work has defined or analyzed what makes a “good” commit mes-

sage, and subsequently analyzed commit messages to assess the

extent of how the quality of messages varies. Second, (RQ2) having

established what makes a good commit message at a high level,

what are recurring patterns of how these well-written messages

are expressed? As we observed, the current state of the art does

not consider the semantics of messages, only their syntax. Finally,

future tools that could assist developers in writing good commit

messages should be able to recognize whether a written message

is “good” or not—for example, tools that can prompt developers in

real-time as they attempt to make a commit may help improve the

quality of commit messages. These tools would also be very useful

for researchers in constructing high-quality datasets of commit

message generation. Hence, our third research question is (RQ3):

can commit messages of good quality be automatically identified?

To answer these questions, we conducted a multi-method study.

We first studied and analyzed a set of ca. 1,600 commit messages

sampled from five major OSS projects. We defined a “good” commit

message as one that explains what was changed, and why a change

was made. We found that around 44% of commit messages lack

‘why’ or ‘what’ information. This highlights the risk of generating

messages based on an unfiltered training dataset that includes low-

quality commit messages. Second, we qualitatively analyzed 252

messages with “good” message labels to identify expression charac-

teristics. Third, we built a model based on Bi-LSTM to automatically

identify well-written messages, achieving good performance.

This paper makes a number of practical and theoretical contri-

butions to the literature on understanding and identification of

high-quality commit messages. Specifically, we 1) propose a set

of criteria for identifying well-written messages; 2) demonstrate

that considerable proportions of commit messages lack essential

information, thus highlighting that this variation in quality requires

measures to mitigate; 3) propose a taxonomy of the expressions of

commit messages; and 4) build an automated classifier to identify

well-written messages.

In the remainder of this paper, we review related work in Sec. 2,

outline our multi-method research approach in Sec. 3, and present

the results of our study in Sec. 4. We discuss the implications for

research and practice in Sec. 5. We present threats to the validity

of our reported findings in Sec. 6 and conclude the paper in Sec. 7.

2 RELATEDWORK
Commit messages constitute an important modality in collaborative

software development for sharing knowledge among developers

and in establishing an audit trail of the evolution of a software

project. We discuss prior literature that has focused on understand-

ing and utilizing commit messages and how to automatically gen-

erate commit messages.

Commit messages are a key resource when addressing several

software engineering challenges. One stream of research has fo-

cused on classifying code changes into different types by utilizing

commit messages manually or automatically to assist maintenance

[25, 49, 54]. For example, Mockus and Votta [49] identified three

types of commits: adaptive, corrective, and perfective, consistent

with Swanson’s typology of maintenance activities [67]. Based

on the proposed commit types, numerous classification models

have been proposed, and commit messages play an important role

[25, 42, 74].

A second stream of research has focused on the measurement

of quality of code changes by analyzing commit messages. For

example, Agrawal et al. [2] studied the evolution of commit qual-

ity in five projects by measuring (among others) the number of

unique commit messages, and found that the quality of commits

declined over time. Santos et al. [58] studied the relationship be-

tween “unusual messages” and code quality in commits, and found

that unusual messages correlate with build failures, suggesting that

these messages serve as a warning sign.
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While it is clear that commit messages play an important role

in communication among developers, developers may lack time

or motivation to craft good commit messages that clearly commu-

nicate what is being committed. To address this, several scholars

have proposed automatic approaches to automatically generate

messages. Some of them are rule-based or use predefined templates

[13, 18, 43, 63]. For instance, Buse and Weimer [13] used symbolic

execution to generate path predicates between versions of code

changes, then populated pre-defined templates and applied sum-

marization transformations to generate commit messages for code

changes. Two important limitations of these commit messages gen-

erated based on templates are (1) a lack of flexibility, and (2) they

cannot convey the intent of committing changes, which only exists

in a developer’s mind until it is written. Recent studies rely on ad-

vanced techniques, such as information retrieval and deep learning

[35, 38, 44–46, 50, 72] to generate commit messages automatically.

These tend to rely on reusing messages of similar code changes. For

example, Huang et al. [36] calculated syntax, semantic, pre-syntax,

and pre-semantic similarities of changed code fragments between

two versions to find similar code changes and reuse their messages.

While specific models vary in their techniques, a common feature

is that they take prior commit messages as a key input. For these

information retrieval and deep learning based tools, the quality

of the manually written commit message is difficult to guarantee

[26, 45], which may threaten the effectiveness of these tools.

A few studies investigated the content of commit messages but

mainly focused on specific aspects. For example, Alomar et al. ex-

plored how developers document their refactoring activities in

commit messages, and found that developers tend to explicitly men-

tion the improvement of certain quality attributes and code smells

[4]. Chahal and Saini [14] constructed a model that can judge the

quality of commit messages by calculating 11 syntactical measures.

Text content in other OSS development activities has been studied,

such as what/how to document when submitting patches [68] and

what information is needed in a bug report [83]. The results of our

study on the distribution and expression categories of good commit

messages and their relationship with maintenance activities can

complement prior understanding of what is a good commit mes-

sage and how to write one. Moreover, we propose a good-message

identification tool that can be used to prompt developers to write

better commit messages and build high-quality datasets for the task

of automatically generating commit messages.

3 STUDY DESIGN
To address the three research questions introduced in Sec. 1, we

conducted a multi-method study. To address RQ1, we compiled

a dataset of commits and manually classified the messages based

on our definition of a “good” commit message. Sec. 3.1 describes

sample selection, data collection, and data processing steps. Sec. 3.2

describes our approach to classifying commit messages. To address

RQ2, we develop a taxonomy that describes how commit messages

convey “what” and “why” information (see Sec. 3.3). Finally, to

address RQ3 we propose a model that could identify these well-

written messages automatically (see Sec. 3.4). Figure 2 presents

an overview of this approach. The appendix offers a replication

package [71].

3.1 Data Collection and Preprocessing
To ensure that our sample would contain sufficient high-quality

commit messages, we selected active and popular projects with a

high level of collaboration. We assumed that those projects would

have at least some non-trivial portion of good commit messages.

Considering the impact of different programming languages on

software development [11], in this study, we focused on projects

written in Java, one of the most popular programming languages in

GitHub [30] and widely used in industry. We selected the top 100

Java projects sorted by their “star” rating in GitHub. While review-

ing these projects, we prioritized projects that had previously been

subject of studies that focused on automatic generation of commit

messages. By addressing some of the limitations of those studies, we

seek to offer the results of this study in future improvement of those

prior studies focusing on commit message generation. As a result,

we selected five OSS projects for this study, listed in Table 1. Spring-
boot [64] helps developers create and run Spring-based applications
with less configuration. Apache Dubbo [9] is a high-performance

micro-service development framework. Okhttp [65] is a HTTP

client. Junit4 [70] provides the ability to write repeatable unit tests.
Retrofit [66] is a type-safe HTTP client for Android and Java. Each

of the five widely investigated [6, 16, 24, 43, 74, 76] projects has

more than 150 contributors, over 8,000 stars, and thousands of com-

mits, indicating that there is active collaboration happening within

these projects.

We collected all the commits from the five projects usingGitHub’s

REST API [31] up to February 2021. In the data collection, we only

considered commits in which the messages are written in English.

This resulted in a dataset containing 41,886 commits (see Table 1).

We eliminated commit messages generated automatically by tools

(bot messages) based on fixed patterns because this study focuses

on messages written manually. Based on the patterns identified by

existing work [7, 22, 23, 27], these bot messages can be easily iden-

tified and filtered. Table 2 shows several patterns of bot messages in

our dataset, which were excluded (ignoring cases). After this data

cleaning step, 29,348 commit messages remained.

Table 1: Dataset summary statistics (until Feb 2021)

Project Start #Contrib. #Commits #Cleaned

Spring-boot Oct-2012 812 30,072 21,169

Apache Dubbo Jun-2012 404 2,687 2,249

Okhttp Jul-2012 236 4,800 2,817

Junit4 Apr-2009 151 2,467 2,035

Retrofit Sep-2010 152 1,860 1,078

41,886 29,348

3.2 Identifying Well-Written Messages
It is known that the quality of commit messages varies [26, 45, 47],

but a widely recognized standard of high-quality messages is as of

yet lacking. Before investigating the characteristics of well-written

messages, we constructed the standards to identify them via a

survey of both academic papers and developer forums and validate

the standards with experienced OSS developers, as described below:
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Data preparation

Select five OSS projects

Sample messages (1,649)

Manual labeling

Sample messages

Qualitative analysis

Thematic analysis

Classification
Preprocess data

Embedding
Model Training

Classified messages

Why What
Taxonomy

Classifier

REST 
API

SECTION 4.2

SECTION 4.3
SECTION 3.4

SECTION 3.3
SECTION 3.1 and 3.2 

Figure 2: Overview of our approach

Table 2: Non-human written message patterns

No. Pattern

1 merge branch <branch> (of <project url>) (into <branch>)

2 merge remote-tracking branch <branch> (into <branch>)

3 [maven-release-plugin]

4 ...cherry picked from commit <commit url>

5 Next development version <version number>

6 message written by non-human accounts, such as Spring

Operator, dependabot[bot], no author

“<branch>” means branch name of the project, “(...)” means optional

• To obtain a scientific perspective of commit messages, we

identified and reviewed 46 relevant studies (the full papers

are listed in our online appendix [71]), mainly focusing on

the expectation of commit messages and whether there is a

standard of good messages.

• To obtain a pragmatic and practice-oriented view of commit

messages, we used Google’s search engine with the phrase

“good commit message.” In the top 50 results sorted by rele-

vance, we manually selected and studied the online records

(and their references) from OSS communities or OSS devel-

opers (the whole set of links is included in the appendix [71]).

Furthermore, we also solicited opinions from 30 experienced

OSS developers to gather their views on what constitutes a

good message; we defined “experienced” here as those devel-

opers who contributed more than 10 commits to the studied

projects.

Through qualitative analysis of the selected records, we observed

that the most frequently recognized expectation of a commit mes-

sage is to summarize the changes in this commit (noted as
‘What’) and describe the reasons for the changes (noted as
‘Why’). The surveyed developers showed a high degree of con-

sistency in the content of commit messages: approximately 93% of

them held the view that a commit message should summarize what
was changed, and describe why those changes are needed. That is,

rather than only summarizing changes or describing the reasons

for the changes, a commit message should have both What and

Why information to help collaborators understand the changes.

Therefore, we conducted this research based on the hypothesis

that a good commit message should contain a justification (i.e.,

“Why”) that describes the motivation of the change, and a change

summary (i.e., “What”). Depending on whether or not the two key

elements, Why andWhat, are included, we divided the commit mes-

sages in our dataset into four types: “Why and What” (containing
both), “No Why” (only What information, but no Why); “No What”
(onlyWhy, but noWhat); and “Neither Why norWhat”.We note that

Why information for certain changes might be common sense. For

example, the commit message “fix typo a->an” omits the reason

of making this commit, which can be easily inferred as “improving

readability.” From the perspective of reducing developers’ workload,

we did not classify these commit messages as “No Why” because

the rationale is trivial. Similarly, some What information could be

easily inferred from diffs,1 and we took the same approach as

we did for Why. More details of the categories of common sense

Why and easy-to-infer What can be found in Sections 4.2.1 and

4.2.2. Further, we found some commits express Why information

by providing a link to an issue report or pull request, which usually

includes a detailed motivation and discussions of the change [8, 82].

This approach is controversial, however: one school of thought ar-

gues that these linked resources provide a convenient way to offer

full details that lay out the rationale for a change [60, 68]. Another

school of thought argues that such links pose a risk as they might

go stale, resulting in a loss of the information they point to, thus

resulting in commit messages that are difficult to understand [41].

In this study, we took the former view and treated links of issue

reports and pull requests in commit messages as a way to provide

Why information.

To study the distribution of the four message types in the se-

lected projects (Table 1), we used the clustered random sampling

technique [5] on the five projects’ commit data and selected 1,649

commit messages (confidence level: 95%, margin of error: 5%), which

were committed by 339 developers. On average, each developer sub-

mitted approximately five commits in our dataset. The first two

authors of this study labeled the commit messages independently,

categorizing each into one of the four message types. During the

labeling process, we identified and eliminated 52 non-atomic com-

mits, where more than one change was submitted. Making multiple

1Diffs are raw content of changes generated using the git diff command to show

differences between different versions of commits.
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changes in a single commit is considered bad practice as it may

reduce maintainability [2, 10, 62]. After labeling the messages (1,649

minus 52 that were removed), Cohen’s kappa coefficient of agree-

ment [17] between the two authors was 0.91. As for the messages

labeled differently, we held several meetings to resolve 66 (approx.

4.1%) disagreements. If the first two authors failed to reach an agree-

ment on the type, a third author acted as an arbitrator. Moreover,

we validated the labeled results by conducting a survey with OSS

contributors. Specifically, we selected 958 experienced contributors

(i.e., those who contributed more than ten commits) from the top

100 Java projects sorted by their star count and sent them a ques-

tionnaire (see the appendix [71]) to solicit their views. We received

30 valid responses (a response rate of 3.1%). After calculating the 120

results labeled by developers (each respondent labeled four commit

messages), we found that 102 results were labeled consistently with

ours. This indicates that the accuracy of the dataset reached almost

85%.

3.3 Characterizing Well-Written Messages
In the second phase, we sought to identify the characteristics of

well-written messages (labeled in Sec. 3.2). We manually sampled

271 (confidence level: 95%, margin of error: 5%) commit messages

with a labeled type as “Why and What”—that is, messages that

contained both Why and What information, and thus did not miss

important information. Among the 271 commits, we removed 19

commits that only use links of pull requests or issue reports to

express Why. For the remaining 252 messages, we used thematic

analysis [20] to characterize how developers expressWhy andWhat

information in the commit messages, according to the following

process. (1) We first read and analyzed all the commit messages, to

understand how developers described code changes and motivation,

and identified phrases that expressed Why and What. (2) We reread

the whole commit messages and related phrases carefully to gener-

ate initial codes and organize them in a systematic way. (3) After

completing the generation of the initial code, we aggregated codes

with similar meanings, and identified an initial theme representing

that cluster. After this step, all codes were divided into one of the

initial themes, which helped in identifying any emergent patterns

that characterized the descriptions of Why and What. (4) We then

reviewed the initial set of themes to identify opportunities to merge

similar themes. By clarifying the essence of each theme, similar

themes were merged into a new theme, or a theme was included as

a sub-theme. (5) In the last step, we defined the final set of themes.

To reduce any researcher bias, steps (1) to (4) described above

were performed independently by the first two authors [57]. After

this, a sequence of meetings was held to resolve conflicts and assign

the final themes (step 5).

During thematic analysis of the 252 commit messages, we found

the way developers describe Why and What in messages tends to

vary across different types of maintenance activities. Therefore,

we also classified commit types to investigate the relationship be-

tween message expression categories and maintenance activities.

Prior literature provides a variety of code change classifications

[49, 56, 67, 73], but no consensus was reached regarding the differ-

ent types of classification to which a commit refers. Therefore, after

an ad-hoc literature review, we adopted the widely used definition

of Mockus and Votta [49] for three commit types: (1) corrective

changes address processing, performance, and implementation fail-

ures; (2) adaptive changes represent changes in the data environ-

ment or processing environment. For example, to implement a new

function; and (3) perfective changes, which focus on improving

non-functional attributes such as efficiency, performance, cleanup,

etc. Then, we identified commit type by deductive thematic analysis

[53], which can match the data with themes from extant research.

More specifically, the first two authors independently took the the-

oretical propositions derived fromMockus and Votta [49] as a point

of departure, and applied them to the 252 commit messages. We ob-

tained a high level of consistency (Cohen’s kappa coefficient = 0.92)

between the two coders. The two coders discussed and resolved

any disagreements.

3.4 Automatic Identification
In the third phase, we sought to develop a solution that could

automatically identify well-written messages. As we defined high-

quality commit messages as those containing both Why and What

information, we first designed two classifiers that could automati-

cally identify whether a message contains Why (labeled C-Why,
and C means “classifier”) and What (labeled C-What) separately.
Training the two separate classifiers can offer more fine-grained

feedback to developers by indicating which of the two key elements

(Why and What) is missing. We then selected and combined the

two classifiers with the best performance to automatically identify

well-written messages that contain both Why and What (labeled

as C-Good).

3.4.1 Data Preparation. We used the commit messages labeled in

Sec. 3.2 to train and test the three classifiers. Commit messages

usually include several tokens that are not “natural language,” such

as links to pull requests. Since their full semantics are highly specific

to the contents of the commits, which we do not consider in this

paper, we replaced these tokens with placeholders indicating the

kind of information, to ensure the models were not affected by such

trivial commit content. Specifically, we identified and replaced the

following tokens of non-natural language: 1) we replaced any URLs

in a message with “<X url>”, where “X” refers to the types of

URLs, i.e., “pr” (indicating pull request links), “issue” (indicating

links of issue reports), and “other.” 2) We replaced code elements

in the messages with “<X name>”, where “X” refers to the types of

code elements, such as method and file. These code elements were

identified by comparing messages with the corresponding code

changes. 3) We retained the paragraph information for commit

messages by replacing newline characters with “<enter>”.

3.4.2 Identification. It is likely that the original dataset is imbal-

anced, i.e., the number of messages that contain Why (or What)

is larger than the messages that do not contain this information.

However, imbalanced datasets can cause machine learning (ML)

models to focus on major categories and undervalue other minor

categories [3] that we are more concerned about in this paper. ML-

based classifiers often use over-sampling methods to solve the data

imbalance problem so as to achieve better performance. To this

end, we tried three widely used over-sampling techniques, includ-

ing random sampling with replacement [37], synthetic minority
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oversampling technique (SMOTE) [15], and the adaptive synthetic

(ADASYN) [33], to prepare the data before training the classifiers,

and selected the technique that produced the highest accuracy in

each classifier.

Next, the input textual messages were vectorized. The vectoriza-

tion method, i.e., Bidirectional Encoder Representations from Trans-

formers (BERT) [21], has been shown to exhibit good performance

in natural language processing tasks including text classification

[1, 29]. We used BERT to embed the tokenized and padded commit

messages and convert each message into a numeric vector. A large

number of techniques have been proposed to solve automatic classi-

fication tasks [48]. We considered the most widely-used techniques

to classify commit messages, including Long Short-Term Memory

(LSTM) [34], bidirectional Long Short-Term Memory (Bi-LSTM)

[61], Multi-Layer Perceptron (MLP) [52], Logistic Regression [48],

Random Forest [12], K-Nearest Neighbors (KNN) [19], Gradient

Boosting Machine [28], and Decision Tree [55]. We evaluated their

performance in our classification task, and selected the best per-

forming approach.

4 RESULTS
We now present the results of our study, addressing the three re-

search questions outlined in Sec. 1. Sec. 4.1 presents the distribution

of different types of commit messages. Sec. 4.2 presents a taxonomy

of well-written messages, comprised of expression categories that

developers use to describe What and Why information. Sec. 4.3

presents the performance results of our automatic classifier of well-

written messages. To facilitate traceability, we provide quote mes-

sages, and provide identifiers in our database [71].

4.1 Quality Distribution of Commit Messages
We manually classified 1,597 commits (sampled from five OSS

projects) into four types based on whether their messages con-

tain Why and What information (see Sec. 3.2). We calculated the

distribution of these four types of commit messages in the five OSS

projects. Figure 3 presents the results. We can see that the dominat-

ing type in four projects (except Retrofit) is well-written messages,

i.e., these messages contain both Why and What information. The

ratio of this message type in the five projects varies from ca. 42% to

ca. 82%, with an average ratio of ca. 56%, suggesting that around 44%

of commit messages have quality issues. This, in turn, suggests that

any automated approaches to generate commit messages which

are trained using datasets containing such large portions may be

compromised, as the generated messages may have learned from

such incomplete messages. While our sample of five projects is

clearly not representative of the larger corpus of Java projects on

GitHub, this finding does highlight a potential issue in terms of the

effectiveness of existing tools.

As for the three questionable types of messages, “No Why” (con-

taining only What information) accounts for the largest proportion

with an average of 28%, and is approximately twice the ratio (12%

on average) of the messages containing only Why information.

It may indicate that writing the reasons of code changes is more

challenging than describing what was changed. Further, the widely

different proportions of “No Why” and “No What” may explain

why generating Why information for code changes is harder than

56.1

20.1

19.5

4.3

42.2

38.1

12.2

7.5

57.2

30.2

11.7

0.9

44.2

46.6

6.7
2.5

82.3

4.0

8.9

4.8

0

25

50

75

100

Dubbo JUnit4 Okhttp Retrofit Spring−boot

%

Neither Why nor What No What No Why Why and What

Figure 3: Distribution of the four types of commit messages

generating What information, which previous studies have borne

out [44–46].

The type of messages that contain neither Why nor What ac-

counts for the smallest proportion, ranging from ca. 1% to ca. 8%.

To further investigate what information the type “Neither Why nor

What” exactly contains, we manually analyzed all the 65 messages

of this type. Following the same set of steps of thematic analysis

[20] described in Sec. 3.3, we identified five categories, each with

unique characteristics:

• Single-word message: containing only one token which

hardly expresses any information. “Merge”, “Polish”, and
“<file name>” are typical examples in our labeled data.

• Submit-centeredmessage: expressing nothing but the fact
that it is a commit. For example, “Loader changes.” It is obvi-
ous that this is a commit, but it is impossible to know what

the changes are, and why they were made.

• Scope-centeredmessage: explaining nothing but the scope
of the changes. Typical messages of this category include

“minor changes in test.” Most of such messages contain qual-

ifying words like “major” and “minor” and cannot express

other information.

• Redundant message: describing content that is easy to

infer from code diffs. For example, “Add <file name>”, “Delete
<file name>.” Even without reading this message, the fact

that a file was added or removed can be easily established.

• Irrelevant message: describing something irrelevant to the

change. A message such as “Kent & Erich patch swallowing
in Merlin” is written to commit a non-empty message, which

conveys no information at all.

The analysis above clearly demonstrates that a considerable

portion of commit messages is problematic, i.e., they do not con-

tain important information. That is, they either miss What or Why
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information, or both. As we discussed in Sec. 2, several message gen-

erators have been trained and evaluated using commit messages as

datasets, without filtering out sub-optimal messages. Consequently,

a major threat was introduced due to using sub-optimal data. The

fourth type, “Neither Why nor What”, might be easy to identify

and remove, but this type only accounts for a limited proportion.

In other words, filtering this type of message cannot address the

threat sufficiently, and a more powerful automatic identifier of good

messages is needed.

Summary for RQ1: The quality of commit messages varies

in the five studied OSS projects, with on average ca. 44% of

messages in need of improvement. Further, we identified five

categories of messages that contain neither “Why” nor “What.”

4.2 A Taxonomy of Commit Messages
We now turn to RQ2, which seeks to shed light on what makes a

well-written commit message. We identified the various categories

of rationales (the “Why”) as well as the contents (the “What”),

and analyzed the relationships between these categories and the

typology of Mockus and Votta [49]. Note that multiple categories

of Why (or What) may exist in the same message. Specifically,

we introduce these categories in Sec. 4.2.1 and 4.2.2, and present

the prevalence of these categories in Sec. 4.2.3. We summarize the

detailed codes and statistics of the Why and What categories in our

online appendix [71].

4.2.1 Why Expression Categories. By analyzing the various ways

in which developers express the change rationale (i.e., Why), we

found that developers tend to express this directly or indirectly,

or sometimes not at all when the reason for a change is common

sense or can be explained by the change itself. Using the procedure

outlined in Sec. 3.3, we identified five main categories with 18

subcategories. We introduce these (sub)categories with examples

as follows, including their counts and percentages (indicated in

parentheses) in the 252 analyzed commit messages.

Describe Issue. This category directly elaborates the motivation

of a code change; it is mainly concerned with an issue in the current

code implementation. Developers explained their motivation for a

change by describing the issues and the specific scenario in which

they occurred. This makes the context of a commit easier to under-

stand for other contributors. We identified three subcategories:

di1 Describe error scenario (#50, 19.8%): this subcategory di-

rectly describes where and how an error occurs. It is the

most common way of describing Why a change was made.

Developers frequently indicated the source of a bug, or spec-

ified the steps for reproducing it, and also explained their

impact; for example: “As-is it throws unchecked exceptions on
unexpected charsets. This is a problem because it can cause a
misbehaving webserver to crash the client.” [#S243]

di2 Introduce issue report (#11, 4.4%): this subcategory de-

scribes issues mainly by citing errors/defects or warnings

from quality assurance tools. Some recognized or common

tools are usually chosen to achieve the contributor’s com-

mon understanding of the mistakes. For example, “remove

warnings found by errorprone. [...] CallTest.java:2056: warning:
[UnnecessaryParentheses] Unnecessary use of grouping paren-
these [...]” [#S88]. This message cites a warning message

from the tool “errorprone” [32] to describe the motivation

for this commit.

di3 Describe shortcoming (#9, 3.6%): this subcategory high-

lights the shortcomings or weaknesses in the current imple-

mentation, which is the motivation to make this commit. For

example, “I’m unhappy with java.io: No timeouts [...] Features
like mark/reset and available() are clumsy [...]” [#S141].

Illustrate Requirement. The second category, Illustrate Require-
ment, describes the source of requirements that led to this commit.

These requirements include the need for software development and

addressing problems in the process of software maintenance. We

identified three subcategories:

ir1 Usage need (#11, 4.4%): these commit messages describe

specific needs or requirements of users in software devel-

opment. This message helps other contributors understand

the background and necessity of this change. For example,

“Error-prone only works on pre-12 at the moment and we need
this configuration to apply for all JDKs” [#S225].

ir2 Out of date (#24, 9.5%): these commit messages indi-

cate the obsolescence of some features or code. This in-

cludes the deprecation and subsequent removal of un-

used code objects such as classes, methods, or attributes

as the software evolved. Other object version upgrades

may also cause a dependency to become obsolete requir-

ing modifications. For example: “Remove outdated key. The
‘spring.metrics.export.redis.aggregate-key-pattern’ is no longer
defined but was still referenced in the documentation.” [#S127].

ir3 Runtime or development environment change (#11,

4.4%): commit messages in this subcategory indicate an

adaptation to the current code development or runtime en-

vironment. This includes changes to the implementation to

adapt dependent functional changes, modify documents, re-

turn values, or examples to accommodate API modifications,

etc. For example, “API has changed, fixing the example,” indi-
cates that the developer changed the example to match the

changes of an API [#S142].

Describe Objective. The third category of rationale provides the
purpose of a change, such as the future prevention of defects or

optimization of functionality or performance. We identified two

types of objectives:

do1 To fix defects (#9, 3.6%): these commit messages make ex-

plicit that the purpose of a change is to resolve a defect. Dif-

ferent from Describe error scenario (di1) that describes
how a defect occurs or can be observed, this type of expres-

sion clarifies how the proposed change will resolve a de-

fect, as in this example: “Fix concurrent problem of zookeeper
configcenter, wait to start until cache being fully populated”
[#S250].

do2 To make improvements (#13, 5.2%): a message in this sub-

category directly describes the improvement of an author’s

code implementation, e.g., functional improvement or non-

functional goals. The message explains the reasons for the
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change by describing a specific promotion goal. Commit

messages in this category usually use phrases such as to do
something or for something to describe what an author seeks

to achieve. For example, the message “AndroidLog: Added
[...] methods for easier subclassing.”[#S181] clarifies that the
change will simplify the act of subclassing.

Imply Necessity. Different from commit messages in the pre-

vious three categories, messages in the Imply Necessity category

only indirectly describe the need for changes. Developers indirectly

described the necessity of changes using the messages that fall into

the following subcategories:

in1 Conventions and standards (#15, 6.0%): this subcategory
describes or refers to any conventions or standards that are

the basis for a change, thus demonstrating a sound rationale

of the change. Conventions are agreements among develop-

ers within the project, or could also be industry-wide con-

ventions. Standards are written specifications, often rather

technical and more formal, and thus are more rigid than

conventions. A common understanding among contributors

expressed in commit message makes a commit easier to

understand. For example, one developer referred to a con-

vention regarding the location of tests, thus explaining why

the commit moves the location of the test: “it is common to
add tests to the same package as the class under test” [#S8].

in2 Relation to prior commits (#9, 3.6%): these commit mes-

sages explain the relationship between the current commit

and any commits that were already merged into the reposi-

tory. These messages clarify the motivation by improving

any problems with a prior accepted change or using the new

features introduced by a previous change, etc. Therefore,

while the Describe Issue category may be used to indicate

that there is a problem before changing it, the nature of this

subcategory is to introduce prior accepted changes as the

context for the current commit. For example, this commit

adds a test because “the code was changed by commit <other
url> but unfortunately the test was not part of the commit”
[#S40].

in3 Relation to an implemented feature (#9, 3.6%): some

commits are related to an existing feature, and this relation-

ship provides the context of the new commit. The current

change is part of a large operation that may be underway,

such as the message [#S44] indicates that the current change

is “a short step on the road to HTTP body format agnostic
support.” The current change may also be preparation work

for an accepted feature, such as message [#S41] which di-

rectly explains that the change will “make a future change
easier to land.” In the context of established goals (achieving

functionality or larger operations), the motivation for this

change will be clear.

in4 Improvements and benefits (#39, 15.5%): the last subcate-
gory refers to commit messages that indirectly describe the

need for a change by explaining the improvements and ben-

efits that the change will bring. Such commits may include

either functional or non-functional improvements such as

readability and maintainability. The commit message may

also include a comparison between “before” and “after” the

commit, which gives collaborators a better understanding

of the motivation for change. For example, the following

commit message suggests a proposed improvement and the

associated benefit: “Use custom exception type [...]. Since we
omit the stack trace, this more clearly indicates the source being
from Retrofit’s mock behavior”[#S103].

MissingWhy. This category includes commit messages that do

not offer a rationale, for example, when it is common sense or easy

to infer. In such cases, there is no need to provide a rationale. These

include the following six subcategories:

mw1 Test cases (#4, 1.6%): these commits involve adding test

cases to the repository; in many projects, there is consensus

among developers to add test cases for each feature. For

example, “tests for canceling async requests.” [#S21].
mw2 Typographic fixes (#7, 2.8%): these commits involve the

correction of typographic errors. Fixing such errors helps to

increase the correctness and readability of code or documen-

tation, for example: “fix typo a->an” [#S4].
mw3 Text file changes (#13, 5.2%): these commits involve changes

made only in text files. Such files have specific functions,

such as “ChangeLog” files that record changes, “README”

files that outline the project, and so on.

mw4 Annotation changes (#5, 2.0%): annotation changes specif-

ically refer to the motivation to modify the content of an-

notations. Annotations are descriptions of code objects, and

their main purpose is to increase the readability of the code,

so the “Why” for comment changes is common sense. For

example, “add docs about null responses” [#261].
mw5 Code refactoring (#15, 6.0%): these changes involve refac-

toring and formatting of code. Changes may include pol-

ishing, formatting, renaming, cleaning up and other similar

operations to improve the readability of the code. For exam-

ple, “Polish pom.xml. Apply consistent formatting, drop JDK 8
support and cleanup repo [...]” [#S47].

mw6 Version management (#5, 2.0%): these commits include

changes that involve version management, such as the up-

dating of version numbers. This is an essential step as it tags

a specific version of the software, which is important for

maintainability, e,g., “prepare version 2.8.1” [#S150].

4.2.2 What Expression Categories. We identified four categories

to express change, i.e. how to express “What” in commit messages.

We introduce these categories with examples as follows, including

their counts and percentages in the 252 analyzed commit messages

(indicated in parentheses).

Summarize Code Object Change. The first category repre-

sents commit messages that summarize the changes; effectively

a summary of the diffs. We identified the following subcategories:

sc1 Characteristics of changes (#13, 5.2%): this subcategory
highlights the characteristics of the current code change

and compares them with other alternative implementations

to summarize code changes. For example, in this commit

message the developer described an “attempt at a 3rd I/O in-
terface”, and described the implementation as being “inspired
by InputStream and OutputStream, but using growing buffers
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instead of byte arrays as the core data container” [#S141]

(advocating against fixed-size byte arrays).

sc2 Object of change (#143, 56.8%): commit messages in this

subcategory summarize the changes from the point of view

of the code objects. Over half of the commits express What

was changed by pointing out the changed object, which

refers to the key component of this change, and developers

highlight this in the message. These code objects include at-

tributes, methods, classes, packages, and so on. For example,

“remove creation of ‘fat’ jar...” [#S157].
sc3 Change list (#6, 2.4%): commit messages in this subcategory

indicate changes of several code objects, involving one or

more source files. For example, “this commit removes the
following deprecated properties: * ‘server.connection-timeout’
* ‘server.use-forward-headers’ [...]” [#S154].

sc4 Contrast before and after (#16, 6.4%): messages in this

subcategory contrast the state of code objects before and

after changes. The following is an example of a contrast be-

fore/after message: “rename HeldCertificate.Builder.issuedBy()
to signedBy()” [#S64].

Describe Implementation Principle. This category represents
commit messages describing technical principles underpinning the

changes. The implementation rationale shows the process by which

the code executes correctly. For example, “SslContextBuilder was
using InetAddress.getByName(null) [...] On Android, null returns IPv6
loopback, which has the name ‘ip6-localhost’ ” [#S251]. Only six

commits (out of 252, 2.4%) fell in this category.

Illustrate Function. Commit messages in this category sum-

marize and explain code changes from a functional perspective.

Unlike describing specific changes in code, these messages pay

more attention to functional changes. Such messages inform other

contributors what has changed by describing any new behaviors in-

troduced by these changes. For example, “Rename preferred-mapper
property so its clear it only applies to JSON” [#S169]. This category
is common, 65 out of the 252 analyzed commits express what was

changed by illustrating function.

Missing What. This category refers to commit messages that

lack any specification of what was changed. Typically any such

changes are small and simple that can be easily inferred.We find this

category in 19 commits (accounting for 7.5%). Common examples

are the correction of typographic errors, renaming of source code

objects, and adding and removing spaces.

4.2.3 Linking Maintenance Dimensions to Commit Messages. As
discussed in Sec. 2, the nature of maintenance activities varies

by type as defined by Mockus and Votta [49]. Different types of

maintenance activities (as per the typology of Mockus and Votta

[49]) tend to take different ways to describe changes. We analyzed

the distribution of the expression categories of Why and What

in the different development activities (see Table 3). It is worth

noting that some developers use multiple (but no more than two)

expression categories together when describing Why or What, and

these messages account for only a small percentage, i.e., no more

than 9% of the 252 messages.

Corrective changes are performed to fix defects in an exist-

ing codebase. As shown in Table 3, this matches our finding that

Table 3: Expression categories across maintenance activities

Category

Corrective Adaptive Perfective

(#116) (#63) (#73)

H
o
w
t
o
e
x
p
r
e
s
s
“
W
h
y
”

Describe issue 45.7% 12.7% 6.9%

Illustrate requirement 12.1% 22.2% 21.9%

Describe objective 6.9% 7.9% 11.0%

Imply necessity 19.0% 39.7% 26.0%

Missing Why 12.1% 15.9% 34.2%

Describe issue & De-

scribe objective

0.8% 0 % 0 %

Describe issue & Im-

ply necessity

2.6% 0 % 0 %

Illustrate requirement

& Imply necessity

0.8% 1.6% 0 %

Total 100.0% 100.0% 100.0%

H
o
w
t
o
e
x
p
r
e
s
s
“
W
h
a
t
”

Summarize code ob-

ject Change

58.6% 60.3% 76.7%

Illustrate function 22.4% 27.0% 8.2%

Describe implementa-

tion principle

4.3% 1.6% 0 %

Missing What 6.1% 3.2% 13.7%

Summarize code ob-

ject change & Illus-

trate function

8.6% 7.9% 1.4%

Total 100.0% 100.0% 100.0%

Describe Issue is the most common expression category to ex-

plain the reason for corrective changes, with the highest proportion

of 45.7%. Developers also express the rationale of code change by

combining Describe Issuewith Describe objective (0.8%) and
Imply necessity (2.6%). Likewise, Summary of code object
changes is the most common category to describe the What for

this maintenance type in a commit message, at 58.6%.

For Adaptive changes, developers often describe Why by in-

directly implying the necessity of the change (category Imply
Necessity), with the highest proportion of 39.7%, and followed

by the Illustrate Requirement category, which clarifies the re-

quirements that underpin the change. A possible reason might be

that a new feature or change in the processing or data environment

usually indicates a need for a change when it is the first commit.

However, the implementation of most new features requires multi-

ple changes, and a developer can explain the motivation of a change

by describing the relationship with a feature or change what was

accepted previously. Another reason may be the description of a

change’s improvements or benefits to support adding new features.

Perfective changes that developers make to improve, for exam-

ple, code readability and quality, usually involve only text files,

comments, or tests. The motivation for these changes tends to be

common sense, so Why information is frequently omitted in the

messages (category Missing Why), with a proportion of 34.2%. For

other non-functional properties, developers tend to use the Imply
necessity and Illustrate requirement categories.



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Tian et al.

We can see that the most common way of expressing Why varies

with the types of maintenance activities, i.e., Describe Issue for
corrective changes, Imply necessity for adaptive changes, and

Missing Why for perfective changes. However, developers tend to

summarize code changes directly when describing changes. In addi-

tion to perfective maintenance activities, summarizing the changes

from the perspective of functional changes is also a common way

for developers. The possible reason is that the improvement of non-

functional properties is not reflected in the functionality offered by

the software. The Missing What category is unusual for all three

maintenance activities.

Summary for RQ2: We identified five expression categories

of “Why” and four expression categories of “What.” Further,

we found that developers have different expression preferences

when writing commit messages for different activities. The

results can help developers write a good commit message.

4.3 Automatically Classifying Good Messages
We performed a ten-fold cross-validation to estimate the classi-

fiers’ performance. The 1,597 messages were randomly partitioned

into ten subsets of similar size. The validation had ten rounds; in

each round, nine subsets were used to train the model, and the

remaining one was used for testing. A different subset was used

for testing in each round. We reported the average performance

of the ten rounds. To investigate the impact of different classifica-

tion techniques on the performance of our approach, we achieved

our classifiers based on eight common classification techniques

respectively (see Sec. 3.4) and repeated the evaluation on the same

dataset. Table 4 presents the performance of C-Why and C-What
using different classification techniques. These results indicate that

Bi-LSTM has the best performance on both C-Why and C-What,
with an accuracy of 84.7% and 91.0%. This result is consistent with

prior findings [40, 80], namely that deep learning based neural net-

works are better at processing text classification tasks. Therefore,

we chose Bi-LSTM to build our classifiers.

Table 4: Ten-fold cross validation of message classification
techniques

Techniques Accuracy C-Why Accuracy C-What

Bi-LSTM 84.7% 91.0%
LSTM 83.6% 90.1%

Logistic Regression 79.1% 85.5%

MLP 80.3% 85.1%

Random Forest 76.5% 86.1%

Gradient Boosting 72.5% 77.1%

KNN 74.5% 70.7%

Decision Tree 68.5% 76.8%

Table 5 shows that the three Bi-LSTM based classifiers perform

very well, with an accuracy of 84.7%, 91.0%, and 75.9%, respectively.

Specifically, when determining whether a message misses “Why”

Table 5: Performance of Bi-LSTM based classifier (ten-fold
cross-validation)

Metrics C-Why C-What C-Good

Positive

Precision 76.5% 78.2% 81.6%

Recall 70.9% 64.5% 74.0%

F1 73.1% 68.9% 77.6%

Negative

Precision 88.1% 93.4% 70.0%

Recall 90.2% 96.2% 78.4%

F1 89.1% 94.7% 73.9%

Accuracy 84.7% 91.0% 75.9%

(Positive: missing Why, Negative: having Why), our classifier C-
Why exhibits good performance with a precision of 76.5% and a

recall of 70.9%. In determining whether a message misses “What”

(Positive: missing What, Negative: having What), our classifier C-
What shows good performance with a precision of 78.2% and a

recall of 64.5%. According to the output of our classifiers, devel-

opers will get a hint of what information is currently missing, so

they can review and revise their commit messages. Further, our

classifier C-Good also exhibits good performance when identify-

ing well-written messages (Positive: well written, Negative: needs
improvement), with a precision of 81.6% and a recall of 74.0%. Com-

pared to the unfiltered dataset with an average of only 56% good

commit messages, our classifier can automatically identify and

construct a higher-quality commit message dataset.

Summary for RQ3:We proposed three classification models

based on Bi-LSTM to automatically identify whether a commit

message is well-written andwhether a commitmessage contains

“Why” or “What.” All of them performed well in our dataset and

can be reused.

5 IMPLICATIONS
Commit messages are of pivotal importance to facilitate coordina-

tion and communication among developers and thus it is important

to understand what constitutes good messages and how they are

written. We discuss implications for developers and researchers.

Implications for Developers. Our analysis of how the Why

and What information is expressed offers developers an under-

standing of what constitutes a good commit message. At the same

time, the results of linking maintenance activities to the message

expression categories can prompt developers to write better com-

mit messages. For example, when performing a corrective task,

developers could initially choose the most common expression cat-

egory (applicable in many scenarios), i.e., Describe Issue; this
would not only improve the commit message, but may also inspire

developers to become more aware of different ways to express why

changes are needed. More specifically, the subcategory Describe
error scenario can inspire the developer to describe the bug re-

production steps and the background of the change. At the same

time, developers can choose the most popular way, i.e., Object of
change to summarize code changes and describe the changes to
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key code objects so that other developers can grasp the focus more

quickly. We hope these can improve the quality of commit messages

in the long term.

We also designed two automatic tools for developers to check

whether the commit message being written conforms to a good

one, i.e., containing both Why and What. With the help of these

tools, the developer can know what is missing in his/her commit

message and supplement it accordingly.

Implications for Researchers. Our study demonstrates that

considerable proportions of commit messages are of poor quality

(an average of 44% in the five popular OSS projects), suggesting

that this important modality for developers to share knowledge is

not used optimally. While this has consequences for the long-term

maintainability of any project, we also observed that approaches

for automatic generation of commit messages are trained with

uncurated data, i.e., datasets with commit messages that are not

filtered based on quality. In turn, such models generate low-quality

commit messages as well, which exacerbates the issue of poorly

written commit messages.

Nevertheless, it is time-consuming for researchers to curate good

commit messages manually. We proposed an automatic classifier

(i.e., C-Good) that performs well in identifying good commit mes-

sages (precision: 81.6%). This classifier has the potential to help

researchers construct a large dataset of high-quality commit mes-

sages from massive historical data stored in GitHub and other VCSs.

In the future, it is necessary to construct a standard dataset of com-

mit messages to facilitate comparison among different generation

methods and promote the quality of generated messages.

6 THREATS TO VALIDITY
We are aware of some threats to validity which we discuss next.

When constructing the dataset, we removed commit messages gen-

erated by known bots [7, 22, 23, 27]. It may be that new bots are

becoming more advanced and generating more human-like mes-

sages, suggesting a threat where the filtered data may still contain

some non-human-written messages. Future work should consider

such developments of new bots as they may require more careful

data filtering. Notably, among the 1,649 manually analyzed mes-

sages, we did not find any new bot patterns, which suggest the

results of our qualitative analysis were not affected.

Manual labeling of commit messages poses a subjective threat

to validity. To minimize this threat, two authors labeled commit

messages independently and introduced an experienced colleague

in qualitative research to reach an agreement through several dis-

cussions. The agreement level (0.91) is high, indicating a high level

of reliability. Some of the labeled messages were subsequently con-

firmed by experienced OSS contributors. Further, the manually

analyzed messages come from 339 developers. It means that multi-

ple commit messages may originate from the same authors, which

pose a threat of limiting the diversity of the message taxonomy.

One strand of future work can extend this analysis to include more

projects (and written in other languages than Java), to verify and, if

needed, enrich the taxonomy of commit messages reported in this

study.

Another threat is that the dataset (1,597 messages in total) is

not large enough for training classifiers. The dataset was randomly

sampled from the five OSS projects, and its limited scale is because

of the complexity involved in manual labeling and analysis of the

commit messages. To reduce this threat, we used a ten-fold cross-

validation procedure to get as much valid information (nine-fold)

from the dataset as possible and use the average performance on

different test datasets to improve the models’ capability to general-

ize [59]. However, developers may write better messages over time.

The ten-fold cross-validation, i.e., randomly divided ten subsets,

did not consider the influence of time on developers’ experience

in writing message. This is one potential strand for future work to

further add rigor to these results.

When automatically classifying commit messages, other factors

may be related to the quality of commit messages. For example,

Chahal and Saini [14] proposed 11 format-related metrics to mea-

sure the syntax quality of commit messages. Our classifiers only

used the text content of messages as input for training. To alle-

viate this threat, we replaced those format-related elements with

a unified token during preprocessing (see Sec. 3.4), such as using

“<enter>” to represent line brakes. This preprocessing ensures that

syntactic features are considered during the classification of commit

messages.

Threats to external validity consider the generalization of our

findings. The dataset we analyzed was collected from five popular

projects on GitHub implemented in Java, thus posing a threat to

external validity. Our findings may not be generalizable to other

projects, whether they are open or closed-source, or projects that

use other languages. It is very well possible that developers us-

ing other programming languages have different message-written

patterns that have not been explored in the scope of this work.

Future studies could investigate more diverse projects to gain a

deeper understanding of what constitutes a good commit message.

Notwithstanding these limitations, the automatic classification tools

we proposed can be easily adapted to other projects with other lan-

guages by simply replacing datasets.

7 CONCLUSION
Commit messages play an important role in collaborating software

development and evolution. Nonetheless, the considerable propor-

tions of low-quality messages in OSS projects reflect the difficulties

that developers face when writing commit messages, and threaten

the effectiveness of existing automatic commit message generation

tools. Our study explored the distribution and expression patterns

of these well-written messages, linked message expression cate-

gories to different maintenance activities, and construct several

automatic identification models of good commit messages. Our

study findings can help developers write good commit messages

and assist researchers to construct high-quality datasets before

generating messages automatically.
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