
CS308, Spring 1999

- 1 -

A Tiny Guide to Programming in
 32-bit x86 Assembly Language

by Adam Ferrari, ferrari@virginia.edu
(with changes by Alan Batson, batson@virginia.edu

and Mike Lack, mnl3j@virginia.edu)

1. Introduction

This small guide, in combination with the material covered in the class lectures on assembly
language programming, should provide enough information to do the assembly language labs for
this class. In this guide, we describe the basics of 32-bit x86 assembly language programming,
covering a small but useful subset of the available instructions and assembler directives. How-
ever, real x86 programming is a large and extremely complex universe, much of which is beyond
the useful scope of this class. For example, the vast majority of real (albeit older) x86 code run-
ning in the world was written using the 16-bit subset of the x86 instruction set. Using the 16-bit
programming model can be quite complex—it has a segmented memory model, more restrictions
on register usage, and so on. In this guide we’ll restrict our attention to the more modern aspects
of x86 programming, and delve into the instruction set only in enough detail to get a basic feel for
programming x86 compatible chips at the hardware level.

2. Registers

Modern (i.e 386 and beyond) x86 processors have 8 32-bit general purpose registers, as
depicted in Figure 1. The register names are mostly historical in nature. For example, EAX used
to be called the “accumulator” since it was used by a number of arithmetic operations, and ECX
was known as the “counter” since it was used to hold a loop index. Whereas most of the registers
have lost their special purposes in the modern instruction set, by convention, two are reserved for
special purposes—the stack pointer (ESP) and the base pointer (EBP).

In some cases, namely EAX, EBX, ECX, and EDX, subsections of the registers may be used.

Figure 1. The x86 register set.

BH

CH

DH

AH

 EBP Base Pointer

ESI

 ESP Stack Pointer

EDI

DL

CL

BL

ALAX

BX

CX

DX

ECX

EAX

EBX

EDX

32 bits
16 bits

8 bits8 bits

General-purpose
Registers

A Tiny Guide to Programming in 32-bit x86 Assembly Language CS 308, Spring 1999

- 2 -

For example, the least significant 2 bytes of EAX can be treated as a 16-bit register called AX.
The least significant byte of AX can be used as a single 8-bit register called AL, while the most
significant byte of AX can be used as a single 8-bit register called AH. It is important to realize
that these names refer to the same physical register. When a two-byte quantity is placed into DX,
the update affects the value of EDX (in particular, the least significant 16 bits of EDX). These
“sub-registers” are mainly hold-overs from older, 16-bit versions of the instruction set. However,
they are sometimes convenient when dealing with data that are smaller than 32-bits (e.g. 1-byte
ASCII characters).

When referring to registers in assembly language, the names are not case-sensitive. For exam-
ple, the names EAX and eax refer to the same register.

3. Memory and Addressing Modes

3.1. Declaring Static Data Regions
You can declare static data regions (analogous to global variables) in x86 assembly using spe-

cial assembler directives for this purpose. Data declarations should be preceded by the .DATA
directive. Following this directive, the directives DB, DW, and DD can be used to declare one, two,
and four byte data locations, respectively. Declared locations can be labeled with names for later
reference - this is similar to declaring variables by name, but abides by some lower level rules.
For example, locations declared in sequence will be located in memory next to one another. Some
example declarations are depicted in Figure 2.

The last example in Figure 2 illustrates the declaration of an array. Unlike in high level lan-
guages where arrays can have many dimensions and are accessed by indices, arrays in assembly
language are simply a number of cells located contiguously in memory. Two other common meth-
ods used for declaring arrays of data are the DUP directive and the use of string literals. The DUP
directive tells the assembler to duplicate an expression a given number of times. For example, the
statement “4 DUP(2)” is equivalent to “2, 2, 2, 2”. Some examples of declaring arrays are
depicted in Figure 3.

.DATA
var DB 64 ; Declare a byte containing the value 64. Label the

; memory location “var”.
var2 DB ? ; Declare an uninitialized byte labeled “var2”.

DB 10 ; Declare an unlabeled byte initialized to 10. This
; byte will reside at the memory address var2+1.

X DW ? ; Declare an uninitialized two-byte word labeled “X”.
Y DD 3000 ; Declare 32 bits of memory starting at address “Y”

; initialized to contain 3000.
Z DD 1,2,3 ; Declare three 4-byte words of memory starting at

; address “Z”, and initialized to 1, 2, and 3,
; respectively. E.g. 3 will be stored at address Z+8.

Figure 2. Declaring memory regions

A Tiny Guide to Programming in 32-bit x86 Assembly Language CS 308, Spring 1999

- 3 -

3.2. Addressing Memory

Modern x86-compatible processors are capable of addressing up to 232 bytes of memory; that
is, memory addresses are 32-bits wide. For example, in Figure 2 and Figure 3, where we used
labels to refer to memory regions, these labels are actually replaced by the assembler with 32-bit
quantities that specify addresses in memory. In addition to supporting referring to memory
regions by labels (i.e. constant values), the x86 provides a flexible scheme for computing and
referring to memory addresses:
X86 Addressing Mode Rule - Up to two of the 32-bit registers and a 32-bit signed constant can
be added together to compute a memory address. One of the registers can be optionally pre-multi-
plied by 2, 4, or 8.

To see this memory addressing rule in action, we’ll look at some example mov instructions.
As we’ll see later in Section 4.1, the mov instruction moves data between registers and memory.
This instruction has two operands—the first is the destination (where we’re moving data to) and
the second specifies the source (where we’re getting the data from). Some examples of mov
instructions using address computations that obey the above rule are:
• mov eax, [ebx] ; Move the 4 bytes in memory at the address contained in EBX into EAX
• mov [var], ebx ; Move the contents of EBX into the 4 bytes at memory address “var”

; (Note, “var” is a 32-bit constant).
• mov eax, [esi-4] ; Move 4 bytes at memory address ESI+(-4) into EAX
• mov [esi+eax], cl ; Move the contents of CL into the byte at address ESI+EAX
• mov edx, [esi+4*ebx] ; Move the 4 bytes of data at address ESI+4*EBX into EDX

Some examples of incorrect address calculations include:
• mov eax, [ebx-ecx] ; Can only add register values
• mov [eax+esi+edi], ebx ; At most 2 registers in address computation

3.3. Size Directives
In general, the intended size of the of the data item at a given memory address can be inferred

from the assembly code instruction in which it is referenced. For example, in all of the above
instructions, the size of the memory regions could be inferred from the size of the register oper-
and—when we were loading a 32-bit register, the assembler could infer that the region of memory
we were referring to was 4 bytes wide. When we were storing the value of a one byte register to
memory, the assembler could infer that we wanted the address to refer to a single byte in memory.
However, in some cases the size of a referred-to memory region is ambiguous. Consider the fol-
lowing instruction:

mov [ebx], 2

bytes DB 10 DUP(?) ; Declare 10 uninitialized bytes starting at
; the address “bytes”.

arr DD 100 DUP(0) ; Declare 100 4 bytes words, all initialized to 0,
; starting at memory location “arr”.

str DB ‘hello’,0 ; Declare 5 bytes starting at the address “str”
; initialized to the ASCII character values for
; the characters ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, and
; ‘\0’(NULL), respectively.

Figure 3. Declaring arrays in memory

A Tiny Guide to Programming in 32-bit x86 Assembly Language CS 308, Spring 1999

- 4 -

Should this instruction move the value 2 into the single byte at address EBX? Perhaps it should
move the 32-bit integer representation of 2 into the 4-bytes starting at address EBX. Since either
is a valid possible interpretation, the assembler must be explicitly directed as to which is correct.
The size directives BYTE PTR, WORD PTR, and DWORD PTR serve this purpose. For example:
• mov BYTE PTR [ebx], 2 ; Move 2 into the single byte at memory location EBX
• mov WORD PTR [ebx], 2 ; Move the 16-bit integer representation of 2 into the 2 bytes starting at

; address EBX
• mov DWORD PTR [ebx], 2 ; Move the 32-bit integer representation of 2 into the 4 bytes starting at

; address EBX

4. Instructions

Machine instructions generally fall into three categories: data movement, arithmetic/logic,
and control-flow. In this section, we will look at important examples of x86 instructions from
each category. This section should not be considered an exhaustive list of x86 instructions, but
rather a useful subset.

In this section, we will use the following notation:
• <reg32> - means any 32-bit register described in Section 2, for example, ESI.

<reg16> - means any 16-bit register described in Section 2, for example, BX.
<reg8> - means any 8-bit register described in Section 2, for example AL.
<reg> - means any of the above.

• <mem> - will refer to a memory address, as described in Section 3, for example [EAX], or
 [var+4], or DWORD PTR [EAX+EBX].

• <con32> - means any 32-bit constant.
<con16> - means any 16-bit constant.
<con8> - means any 8-bit constant.
<con> - means any of the above sized constants.

4.1. Data Movement Instructions

Instruction: mov

Syntax: mov <reg>,<reg>
mov <reg>,<mem>
mov <mem>,<reg>
mov <reg>,<const>
mov <mem>,<const>

Semantics: The mov instruction moves the data item referred to by its second operand (i.e.
register contents, memory contents, or a constant value) into the location referred
to by its first operand (i.e. a register or memory). While register-to-register moves
are possible, direct memory-to-memory moves are not. In cases where memory
transfers are desired, the source memory contents must first be loaded into a regis-
ter, then can be stored to the destination memory address.

Examples: mov eax, ebx ; transfer ebx to eax
mov BYTE PTR [var], 5 ; store the value 5 into the byte at

; memory location “var”

A Tiny Guide to Programming in 32-bit x86 Assembly Language CS 308, Spring 1999

- 5 -

Instruction: push

Syntax: push <reg32>
push <mem>
push <con32>

Semantics: The push instruction places its operand onto the top of the hardware supported
stack in memory. Specifically, push first decrements ESP by 4, then places its
operand into the contents of the 32-bit location at address [ESP]. ESP (the stack
pointer) is decremented by push since the x86 stack grows down - i.e. the stack
grows from high addresses to lower addresses.

Examples: push eax ; push the contents of eax onto the stack
push [var] ; push the 4 bytes at address “var” onto the stack

Instruction: pop

Syntax: pop <reg32>
pop <mem>

Semantics: The pop instruction removes the 4-byte data element from the top of the hard-
ware-supported stack into the specified operand (i.e. register or memory location).
Specifically, pop first moves the 4 bytes located at memory location [SP] into the
specified register or memory location, and then increments SP by 4.

Examples: pop edi ; pop the top element of the stack into EDI.
pop [ebx] ; pop the top element of the stack into memory at the

; four bytes starting at location EBX.

Instruction: lea

Syntax: lea <reg32>,<mem>
Semantics: The lea instruction places the address specified by its second operand into the

register specified by its first operand. Note, the contents of the memory location
are not loaded—only the effective address is computed and placed into the register.
This is useful for obtaining a “pointer” into a memory region.

Examples: lea eax, [var] ; the address of “var” is places in EAX.
lea edi, [ebx+4*esi] ; the quantity EBX+4*ESI is placed in EDI.

4.2. Arithmetic and Logic Instructions

Instruction: add, sub

Syntax: add <reg>,<reg> sub <reg>,<reg>
add <reg>,<mem> sub <reg>,<mem>
add <mem>,<reg> sub <mem>,<reg>
add <reg>,<con> sub <reg>,<con>
add <mem>,<con> sub <mem>,<con>

Semantics: The add instruction adds together its two operands, storing the result in its first
operand. Similarly, the sub instruction subtracts its second operand from its first.
Note, whereas both operands may be registers, at most one operand may be a
memory location.

Examples: add eax, 10 ; add 10 to the contents of EAX.
sub [var], esi ; subtract the contents of ESI from the 32-bit

; integer stored at memory location “var”.

A Tiny Guide to Programming in 32-bit x86 Assembly Language CS 308, Spring 1999

- 6 -

add BYTE PTR [var], 10 ; add 10 to the single byte stored
 ; at memory address “var”.

Instruction: inc, dec

Syntax: inc <reg> dec <reg>
inc <mem> dec <mem>

Semantics: The inc instruction increments the contents of its operand by one, and similarly
dec decrements the contents of its operand by one.

Examples: dec eax ; subtract one from the contents of EAX.
inc DWORD PTR [var] ; add one to the 32-bit integer stored at

; memory location “var”.

Instruction: imul

Syntax: imul <reg32>,<reg32>
imul <reg32>,<mem>
imul <reg32>,<reg32>,<con>
imul <reg32>,<mem>,<con>

Semantics: The imul instruction has two basic formats: two-operand (first two syntax listings
above) and three-operand (last two syntax listings above).
The two-operand form multiplies its two operands together and stores the result in
the first operand. The result (i.e. first) operand must be a register.
The three operand form multiplies its second and third operands together and
stores the result in its first operand. Again, the result operand must be a register.
Furthermore, the third operand is restricted to being a constant value.

Examples: imul eax, [var] ; multiply the contents of EAX by the 32-bit
; contents of the memory location “var”. Store
; the result in EAX.

imul esi, edi, 25 ; multiply the contents of EDI by 25. Store the
; result in ESI.

Instruction: idiv

Syntax: idiv <reg32>
idiv <mem>

Semantics: The idiv instruction is used to divide the contents of the 64 bit integer EDX:EAX
(constructed by viewing EDX as the most significant four bytes and EAX as the
least significant four bytes) by the specified operand value. The quotient result of
the division is stored into EAX, while the remainder is placed in EDX. This
instruction must be used with care. Before executing the instruction, the appropri-
ate value to be divided must be placed into EDX and EAX. Clearly, this value is
overwritten when the idiv instruction is executed.

Examples: idiv ebx ; divide the contents of EDX:EAX by the contents of
 ; EBX. Place the quotient in EAX and the remainder

; in EDX.
idiv DWORD PTR [var] ; same as above, but divide by the 32-bit

 ; value stored at memory location “var”.

A Tiny Guide to Programming in 32-bit x86 Assembly Language CS 308, Spring 1999

- 7 -

Instruction: and, or, xor

Syntax: and <reg>,<reg> or <reg>,<reg> xor <reg>,<reg>
and <reg>,<mem> or <reg>,<mem> xor <reg>,<mem>
and <mem>,<reg> or <mem>,<reg> xor <mem>,<reg>
and <reg>,<con> or <reg>,<con> xor <reg>,<con>
and <mem>,<con> or <mem>,<con> xor <mem>,<con>

Semantics: These instructions perform the specified logical operation (logical bitwise and, or,
and exclusive or, respectively) on their operands, placing the result in the first
operand location.

Examples: and eax, 0fH ; clear all but the last 4 bits of EAX.
xor edx, edx ; set the contents of EDX to zero.

Instruction: not

Syntax: not <reg>
not <mem>

Semantics: Performs the logical negation of the operand contents (i.e. flips all bit values).
Examples: not BYTE PTR [var]; negate all bits in the byte at the memory

; location “var”.

Instruction: neg

Syntax: neg <reg>
neg <mem>

Semantics: Performs the arithmetic (i.e. two’s complement) negation of the operand contents.
Examples: neg eax ; negate the contents of EAX.

Instruction: shl, shr

Syntax: shl <reg>,<con8> shr <reg>,<con8>
shl <mem>,<con8> shr <mem>,<con8>
shl <reg>,cl shr <reg>,cl
shl <mem>,cl shr <mem>,cl

Semantics: These instructions shift the bits in their first operand’s contents left and right (shl
and shr, respectively), padding the resulting empty bit positions with zeros. The
shifted operand can be shifted up to 31 places. The number of bits to shift is speci-
fied by the second operand, which can be either an 8-bit constant or the register
CL. In either case, shifts counts of greater then 31 are performed modulo 32.

4.3. Control Flow Instructions
In this section, we will refer to labeled locations in the program text as <label>. Labels can

be inserted anywhere in x86 assembly code text by entering a label name followed by a colon. For
example, consider the code fragment in Figure 4. The second instruction in this code fragment is
labeled “begin”. Elsewhere in the code, we can refer to the memory location that this instruction
is located at in memory using the more convenient symbolic name “begin” instead of having to

A Tiny Guide to Programming in 32-bit x86 Assembly Language CS 308, Spring 1999

- 8 -

refer to the memory address as an integer.

Instruction: jmp

Syntax: jmp <label>
Semantics: Transfers program control flow to the instruction at the memory location indicated

by the operand.
Examples: jmp begin

Instruction: jCC

Syntax: je <label> - Jump when equal
jne <label> - Jump when not equal
jz <label> - Jump when last result was zero
jg <label> - Jump when greater than
jge <label> - Jump when greater than or equal to
jl <label> - Jump when less than
jle <label> - Jump when less than or equal to

Semantics: These instructions are conditional jumps that are based on the status of a set of
condition codes that are stored in a special register called the machine status
word. The contents of the machine status word include information about the last
arithmetic operation performed. For example, one bit of this word indicates if the
last result was zero. Another indicates if the last result was negative. Based on
these condition codes, a number of conditional jumps can be performed. For exam-
ple, the jz instruction performs a jump to the specified operand label if the result
of the last arithmetic operation (e.g. add, sub, etc.) was zero. Otherwise, control
proceeds to the next instruction in sequence after the jz. These conditional jumps
are the underlying support needed to implement high-level language features such
as “if” statements and loops (e.g. “while” and “for”).
A number of the conditional branches are given names that are intuitively based on
the last operation performed being a special compare instruction, cmp (see below).
For example, conditional branches such as jle and jne are based on first per-
forming a cmp operation on the desired operands.

Examples: cmp eax, ebx ; if the contents of eax are less than or equal
jle done ; to the contents of EBX, jump to the code

; location labeled “done”.

Instruction: cmp

Syntax: cmp <reg>,<reg>

mov esi, [ebp+8]
begin: xor ecx, ecx

mov eax, [esi]

Figure 4. A labeled code location

A Tiny Guide to Programming in 32-bit x86 Assembly Language CS 308, Spring 1999

- 9 -

cmp <reg>,<mem>
cmp <mem>,<reg>
cmp <reg>,<con>
cmp <mem>,<con>

Semantics: Compares the two specified operands, setting the condition codes in the machine
status word appropriately. In fact, this instruction is equivalent to the sub instruc-
tion, except the result of the subtraction is discarded.

Examples: cmp DWORD PTR [var], 10 ; if the 4 bytes stored at memory location
jeq loop ; “var” equal the 4-byte integer value 10,

; then jump to the code location labeled
; loop

Instruction: call

Syntax: call <label>
Semantics: This instruction implements a subroutine call that operates in cooperation with the

subroutine return instruction, ret, described below. This instruction first pushes
the current code location onto the hardware supported stack in memory (see the
push instruction for details), and then performs an unconditional jump to the code
location indicated by the label operand. The added value of this instruction (as
compared to the simple jmp instruction) is that it saves the location to return to
when the subroutine completes.

Examples: call my_subroutine

Instruction: ret

Syntax: ret
Semantics: In cooperation with the call instruction, the ret instruction implements a sub-

routine return mechanism. This instruction first pops a code location off the hard-
ware supported in-memory stack (see the pop instruction for details). It then
performs an unconditional jump to the retrieved code location.

Examples: ret

5. Basic Program Structure

Given the above repertoire of instructions, you are in a position to examine the basic skeletal
structure of an assembly language subroutine suitable for linking into C++ code. Unlike C++,
which is often used for the development of complete software systems, assembly language is most
often used in cooperation with other languages such as Fortran, C, and C++. Commonly, most of
a project is implemented in the more convenient high-level language, and assembly language is
used sparingly to implement extremely low-level hardware interfaces or performance-critical
“inner loops.” Thus, in addition to understanding how to program in assembly language, it is
equally important to understand how to link assembly language code into high-level language
programs.

Before examining the linkage conventions, we must first examine the basic structure of an
assembly language file. To do this, we can compare a very simple assembly language file to an
equivalent C++ file. In Figure 5 we see two files, one in C++, the other in x86 assembly. Each file

A Tiny Guide to Programming in 32-bit x86 Assembly Language CS 308, Spring 1999

- 10 -

includes a function (albeit an ugly one) to return the integer value 2.

The top of the assembly file contains two directives that indicate the instruction set and mem-
ory model we will use for all work in this class (note, there are other possibilities—one might use
only the older 80286 instruction set for wider compatibility, for example).

Next, where in the C++ file we find the declaration of the global variable “var”, in the
assembly file we find the use of the .DATA and DD directives (described in Section 3.1) to reserve
and initialize a 4-byte (i.e. integer-sized) memory region labeled “var”.

Next in each file, we find the declaration of the function named returnTwo. In the C++ file
we have declared the function to be extern “C” . This declaration indicates that the C++ com-
piler should use C naming conventions when labeling the function returnTwo in the resulting
object file that it produces. In fact, this naming convention means that the function returnTwo
should map to the label _returnTwo in the object code. In the assembly code, we have labeled
the beginning of the subroutine _returnTwo using the PROC directive, and have declared the
label _returnTwo to be public. Again, the result of these actions will be that the subroutine will
map to the symbol _returnTwo in the object code that the assembler generates.

The function bodies are straight-forward. As we will see in more detail in Section 6, return
values for functions are placed into EAX by convention, hence the instruction to move the con-
tents of “var” into EAX in the assembly code.

Given these equivalent function definitions, use of either version of the function is the same.
A sample call to the function returnTwo is depicted in Figure 6. This C++ code could be linked
to either definition of the function and would produce the same results (note, we could not link to
both definitions, or the linker would produce a “multiply defined symbol” error. The mechanics of

.486
MODEL FLAT

.DATA
var DD 2

.CODE
PUBLIC _returnTwo
_returnTwo PROC

mov eax, [var]
ret

ENDP _returnTwo
END

int var = 2;

extern “C” int returnTwo();
int returnTwo()
{

return var;
}

Figure 5. Equivalent functions that return the value 2,
implemented in C++ (left) and x86 (right).

A Tiny Guide to Programming in 32-bit x86 Assembly Language CS 308, Spring 1999

- 11 -

linking programs in the Borland environment available in the lab are covered in Section 7.

6. Subroutine Calling Convention

6.1. What is a Calling Convention?
In Section 5 we saw a simple example of a subroutine defined in x86 assembly language. In

fact, this subroutine was quite simple—it did not modify any registers except EAX (which was
needed to return the result), and it did not call any other subroutines. In practice, such simple
function definitions are rarely useful. When more complex subroutines are combined in a single
program, a number of complicating issues arise. For example, how are parameters passed to a
subroutine? Can subroutines overwrite the values in a register, or does the caller expect the regis-
ter contents to be preserved? Where should local variables in a subroutine be stored? How should
results be returned from functions?

To allow separate programmers to share code and develop libraries for use by many programs,
and to simplify the use of subroutines in general, programmers typically adopt a common calling
convention. The calling convention is simply a set of rules that answers the above questions with-
out ambiguity to simplify the definition and use of subroutines. For example, given a set of calling
convention rules, a programmer need not examine the definition of a subroutine to determine how
parameters should be passed to that subroutine. Furthermore, given a set of calling convention
rules, high-level language compilers can be made to follow the rules, thus allowing hand-coded
assembly language routines and high-level language routines to call one another.

In practice, even for a single processor instruction set, many calling conventions are possible.
In this class we will examine and use one of the most important conventions: the C language call-
ing convention. Understanding this convention will allow you to write assembly language subrou-
tines that are safely callable from C and C++ code, and will also enable you to call C library
functions from your assembly language code.

6.2. The C Calling Convention
The C calling convention is based heavily on the use of the hardware-supported stack. To

understand the C calling convention, you should first make sure that you fully understand the
push, pop, call, and ret instructions—these will be the basis for most of the rules. In this
calling convention, subroutine parameters are passed on the stack. Registers are saved on the
stack, and local variables used by subroutines are placed in memory on the stack. In fact, this
stack-centric implementation of subroutines is not unique to the C language or the x86 architec-
ture. The vast majority of high-level procedural languages implemented on most processors have
used similar calling convention.

#include <iostream.h>
extern “C” int returnTwo();
int main()
{

if(returnTwo()!=2) {
cerr << “Does not compute!\n”;

}
}

Figure 6. Calling returnTwo from C++.

A Tiny Guide to Programming in 32-bit x86 Assembly Language CS 308, Spring 1999

- 12 -

The calling convention is broken into two sets of rules. The first set of rules is employed by
the caller of the subroutine, and the second set of rules is observed by the writer of the subroutine
(the “callee”). It should be emphasized that mistakes in the observance of these rules quickly
result in fatal program errors; thus meticulous care should be used when implementing the call
convention in your own subroutines.

6.2.1. The Caller’s Rules
The caller should adhere to the following rules when invoking a subroutine:

1. Before calling a subroutine, the caller should save the contents of certain registers that are des-
ignated caller-saved. The caller-saved registers are EBX, ECX, EDX. If you want the contents
of these registers to be preserved across the subroutine call, push them onto the stack.

1. To pass parameters to the subroutine, push them onto the stack before the call. The parameters
should be pushed in inverted order (i.e. last parameter first)—since the stack grows down, the
first parameter will be stored at the lowest address (this inversion of parameters was histori-
cally used to allow functions to be passed a variable number of parameters).

2. To call the subroutine, use the call instruction. This instruction places the return address on
top of the parameters on the stack, and branches to the subroutine code.

3. After the subroutine returns, (i.e. immediately following the call instruction) the caller must
remove the parameters from stack. This restores the stack to its state before the call was per-
formed.

4. The caller can expect to find the return value of the subroutine in the register EAX.
5. The caller restores the contents of caller-saved registers (EBX, ECX, EDX) by popping them

off of the stack. The caller can assume that no other registers were modified by the subroutine.

6.2.2. The Callee’s Rules
The definition of the subroutine should adhere to the following rules:

1. At the beginning of the subroutine, the function should push the value of EBP onto the stack,
and then copy the value of ESP into EBP using the following instructions:

push ebp
mov ebp, esp

The reason for this initial action is the maintenance of the base pointer, EBP. The base pointer
is used by convention as a point of reference for finding parameters and local variables on the
stack. Essentially, when any subroutine is executing, the base pointer is a “snapshot” of the
stack pointer value from when the subroutine started executing. Parameters and local vari-
ables will always be located at known, constant offsets away from the base pointer value. We
push the old base pointer value at the beginning of the subroutine so that we can later restore
the appropriate base pointer value for the caller when the subroutine returns. Remember, the
caller isn’t expecting the subroutine to change the value of the base pointer. We then move the
stack pointer into EBP to obtain our point of reference for accessing parameters and local
variables.

2. Next, allocate local variables by making space on the stack. Recall, the stack grows down, so
to make space on the top of the stack, the stack pointer should be decremented. The amount by
which the stack pointer is decremented depends on the number of local variables needed. For

A Tiny Guide to Programming in 32-bit x86 Assembly Language CS 308, Spring 1999

- 13 -

example, if 3 local integers (4 bytes each) were required, the stack pointer would need to be
decremented by 12 to make space for these local variables. I.e:

sub esp, 12

As with parameters, local variables will be located at known offsets from the base pointer.
3. Next, the values of any registers that are designated callee-saved that will be used by the func-

tion must be saved. To save registers, push them onto the stack. The callee-saved registers are
EDI and ESI (ESP and EBP will also be preserved by the call convention, but need not be
pushed on the stack during this step).

After these three actions are performed, the actual operation of the subroutine may proceed.
When the subroutine is ready to return, the call convention rules continue:

4. When the function is done, the return value for the function should be placed in EAX if it is
not already there.

5. The function must restore the old values of any callee-saved registers (EDI and ESI) that were
modified. The register contents are restored by popping them from the stack. Note, the regis-
ters should be popped in the inverse order that they were pushed.

6. Next, we deallocate local variables. The obvious way to do this might be to add the appropri-
ate value to the stack pointer (since the space was allocated by subtracting the needed amount
from the stack pointer). In practice, a less error-prone way to deallocate the variables is to
move the value in the base pointer into the stack pointer, i.e.:

mov esp, ebp

This trick works because the base pointer always contains the value that the stack pointer con-
tained immediately prior to the allocation of the local variables.

7. Immediately before returning, we must restore the caller’s base pointer value by popping EBP
off the stack. Remember, the first thing we did on entry to the subroutine was to push the base
pointer to save its old value.

8. Finally, we return to the caller by executing a ret instruction. This instruction will find and
remove the appropriate return address from the stack.

It might be noted that the callee’s rules fall cleanly into two halves that are basically mirror
images of one another. The first half of the rules apply to the beginning of the function, and are
therefor commonly said to define the prologue to the function. The latter half of the rules apply to
the end of the function, and are thus commonly said to define the epilogue of the function.

6.2.3. Call Convention Example
The above rules may seem somewhat abstract on first examination. In practice, the rules

become simple to use when they are well understood and familiar. To start the process of better
understanding the call convention, we now examine a simple example of a subroutine call and a
subroutine definition.

In Figure 7 a sample function call is depicted. Note how the caller pushes the parameters onto

A Tiny Guide to Programming in 32-bit x86 Assembly Language CS 308, Spring 1999

- 14 -

the stack in inverted order before the call. The call instruction is used to jump to the beginning

of the subroutine in anticipation of the fact that the subroutine will use the ret instruction to
return when the subroutine completes. When the subroutine returns, the parameters must be
removed from the stack. A simple way to do this is to add the appropriate amount to the stack
pointer (since the stack grows down). Finally, the result is available in EAX.

Relative to the caller’s rules, the callee’s rules are somewhat more complex. An example sub-
routine implementation that obeys the callee’s rules is depicted in Figure 8. The subroutine pro-
logue performs the standard actions of saving a snapshot of the stack pointer in EBP (the base
pointer), allocating local variables by decrementing the stack pointer, and saving register values
on the stack.

In the body of the subroutine we can now more clearly see the use of the base pointer illus-
trated. Both parameters and local variables are located at constant offsets from the base pointer for
the duration of the subroutines execution. In particular, we notice that since parameters were
placed onto the stack before the subroutine was called, they are always located below the base
pointer (i.e. at higher addresses) on the stack. The first parameter to the subroutine can always be
found at memory location [EBP+8], the second at [EBP+12], the third at [EBP+16], and so on.
Similarly, since local variables are allocated after the base pointer is set, they always reside above
the base pointer (i.e. at lower addresses) on the stack. In particular, the first local variable is
always located at [EBP-4], the second at [EBP-8], and so on. Understanding this conventional use
of the base pointer allows us to quickly identify the use of local variables and parameters within a
function body.

The function epilogue, as expected, is basically a mirror image of the function prologue. The
caller’s register values are recovered from the stack, the local variables are deallocated by reset-

; Want to call a function “myFunc” that takes three
; integer parameters. First parameter is in EAX.
; Second parameter is the constant 123. Third
; parameter is in memory location “var”

push [var] ; Push last parameter first
push 123
push eax ; Push first parameter last

call _myFunc ; Call the function (assume C naming)

; On return, clean up the stack. We have 12 bytes
; (3 parameters * 4 bytes each) on the stack, and the
; stack grows down. Thus, to get rid of the parameters,
; we can simply add 12 to the stack pointer

add esp, 12

; The result produced by “myFunc” is now available for
; use in the register EAX. No other register values
; have changed

Figure 7. Example function call, caller’s rules obeyed

A Tiny Guide to Programming in 32-bit x86 Assembly Language CS 308, Spring 1999

- 15 -

ting the stack pointer, the caller’s base pointer value is recovered, and the ret instruction is used to
return to the appropriate code location in the caller.

A good way to visualize the operation of the calling convention is to draw the contents of the
nearby region of the stack during subroutine execution. Figure 9 depicts the contents of the stack
during the execution of the body of myFunc (depicted in Figure 8). Notice, lower addresses are
depicted lower in the figure, and thus the “top” of the stack is the bottom-most cell. This corre-
sponds visually to the intuitive statement that the x86 hardware stack “grows down.” The cells
depicted in the stack are 32-bit wide memory locations, thus the memory addresses of the cells are
4 bytes apart. From this picture we see clearly why the first parameter resides at an offset of 8
bytes from the base pointer. Above the parameters on the stack (and below the base pointer), the
call instruction placed the return address, thus leading to an extra 4 bytes of offset from the base
pointer to the first parameter.

.486
MODEL FLAT
.CODE
PUBLIC _myFunc
_myFunc PROC

; *** Standard subroutine prologue ***
push ebp ; Save the old base pointer value.
mov ebp, esp ; Set the new base pointer value.
sub esp, 4 ; Make room for one 4-byte local variable.
push edi ; Save the values of registers that the function
push esi ; will modify. This function uses EDI and ESI.

 ; (no need to save EAX, EBP, or ESP)

; *** Subroutine Body ***
mov eax, [ebp+8] ; Put value of parameter 1 into EAX
mov esi, [ebp+12]; Put value of parameter 2 into ESI
mov edi, [ebp+16]; Put value of parameter 3 into EDI

mov [ebp-4], edi ; Put EDI into the local variable
add [ebp-4], esi ; Add ESI into the local variable
add eax, [ebp-4] ; Add the contents of the local variable

 ; into EAX (final result)

; *** Standard subroutine epilogue ***
pop esi ; Recover register values
pop edi
mov esp, ebp ; Deallocate local variables
pop ebp ; Restore the caller’s base pointer value
ret

ENDP _myFunc
END

Figure 8. Example function definition, callee’s rules obeyed

A Tiny Guide to Programming in 32-bit x86 Assembly Language CS 308, Spring 1999

- 16 -

7. Using the Borland Environment

Thus far in this guide we have only covered programming concepts, not actual programming
environment mechanics such as how to use the Borland x86 assembly language tools available in
the lab. In this section we describe the basic steps involved in assembling, linking, and debugging
combined C++/assembly language programs in the Borland environment. This quick guide
assumes familiarity with the Borland C++ Integrated Development Environment (IDE), which
you have used in other computer science classes.

7.1. Assembly and Linking
You can write assembly language files in the same way that you compose new C++ files in the

Borland environment. From the File menu, select New, then select Text Edit. When you save
your file, use the extension “.asm” instead of the familiar “.cpp”. This will let the Borland envi-
ronment know that it’s dealing with assembly code instead of C++.

You can add assembly language source files to a project in the same way that you add C++
files to a project. In the Project window (select Project from the View menu to display the Project
Window), right-click on the appropriate target and select Add Node. Your assembly file will not
appear on the default list of files (only .cpp files appear). Select “.asm” in the Files of Type drag-
down menu, then select your .asm file.

NOTE: Do not name your assembly language file with the same name as your project file (e.g.
sort.ide, sort.cpp, sort.asm) as this will confuse the linker. It would be better to name your assem-

(saved value of ebp)

(return address)

parameter 1

parameter 2

parameter 3

local variable 1

ebp

saved value of edi

saved value of esi esp

[ebp+8]

[ebp+12]

[ebp+16]

[ebp-4]

Higher Addresses

Lower Addresses

Figure 9. A picture of the stack in memory during the
execution of the body of myFunc.

A Tiny Guide to Programming in 32-bit x86 Assembly Language CS 308, Spring 1999

- 17 -

bly language file in a way that suggests what it does (e.g. sort.ide, sort.cpp, bubblesort.asm).
Before you can compile and link your program, you’ll need to set some of the target options

for the project. Right-click on the target in your Project window and select Target Expert. In the
Target Expert dialogue window, set Target Type to Application (.exe), set Platform to Win32, set
Target Model to Console, un-select all Libraries, Frameworks, and Controls, and select Static
linking. The multithreaded option should be de-selected by default—if not, turn this option off.

You are now ready to compile your combined C++/assembly program. From the Project win-
dow, select Build all. Errors will appear as usual in the Message window. Once all compile and
link errors are resolved, you can try running your application from the command prompt (i.e. from
outside the Borland IDE). If your program does not run as expected, you can debug it in the Bor-
land IDE using the interactive debugger.

7.2. Debugging
The debugging process is for the most part similar to your experience using the debugger on

C++ code. However, when debugging assembly code, we are generally interested in examining
lower-level program states. In addition to looking at variable (i.e. memory) contents, we also wish
to see the contents of registers, the current machine instruction, the state of the stack, and so on.

To debug your assembly language function, set a breakpoint at the call site within your C++
code. Once the program suspends execution and is about to step into your assembly language
code, select CPU from the View menu. Notice that the usual statement step over and statement
step into buttons have been replaced with instruction step over and instruction step into but-
tons. Within the CPU window you can examine the register contents, the stack contents, memory,
and your assembly language instructions. Now you can use the instruction step into button (or
the F7 key) to step through your instructions one at a time. After each instruction has executed,
you can examine the complete state of the CPU and verify that your code is executing as you
expected, or find out why it isn’t.

