
x86-64
Assembly Language

Programming
with

Ubuntu

Ed Jorgensen, Ph.D.
Version 1.1.44

May 2022

Cover image:
Top view of an Intel central processing unit Core i7 Skylake type core,
model 6700K, released in June 2015.
Source: Eric Gaba, https://commons.wikimedia.org/wiki/File :

Intel_CPU_Core_i7_6700K_Skylake_top.jpg

Cover background:
By Benjamint444 (Own work)
Source: http://commons.wikimedia.org/wiki/File%3ASwirly_belt444.jpg

Copyright © 2015 - 2022 by Ed Jorgensen

You are free:
To Share — to copy, distribute and transmit the work
To Remix — to adapt the work

Under the following conditions:
Attribution — you must attribute the work in the manner specified by the author
or licensor (but not in any way that suggests that they endorse you or your use of
the work).
Noncommercial — you may not use this work for commercial purposes.
Share Alike — if you alter, transform, or build upon this work, you may
distribute the resulting work only under the same or similar license to this one.

https://commons.wikimedia.org/wiki/File
http://commons.wikimedia.org/wiki/File%3ASwirly_belt444.jpg
https://commons.wikimedia.org/wiki/File:Intel_CPU_Core_i7_6700K_Skylake_top.jpg
https://commons.wikimedia.org/wiki/File:Intel_CPU_Core_i7_6700K_Skylake_top.jpg

Table of Contents

Table of Contents
 1.0 Introduction...1

 1.1 Prerequisites..1
 1.2 What is Assembly Language...2
 1.3 Why Learn Assembly Language...2

 1.3.1 Gain a Better Understanding of Architecture Issues...................................3
 1.3.2 Understanding the Tool Chain...3
 1.3.3 Improve Algorithm Development Skills...3
 1.3.4 Improve Understanding of Functions/Procedures.......................................3
 1.3.5 Gain an Understanding of I/O Buffering...4
 1.3.6 Understand Compiler Scope..4
 1.3.7 Introduction Multi-processing Concepts...4
 1.3.8 Introduction Interrupt Processing Concepts..4

 1.4 Additional References...4
 1.4.1 Ubuntu References..5
 1.4.2 BASH Command Line References..5
 1.4.3 Architecture References..5
 1.4.4 Tool Chain References..5

 1.4.4.1 YASM References...6
 1.4.4.2 DDD Debugger References...6

 2.0 Architecture Overview...7
 2.1 Architecture Overview..7
 2.2 Data Storage Sizes...8
 2.3 Central Processing Unit...9

 2.3.1 CPU Registers...10
 2.3.1.1 General Purpose Registers (GPRs)..10
 2.3.1.2 Stack Pointer Register (RSP)...12
 2.3.1.3 Base Pointer Register (RBP)..12
 2.3.1.4 Instruction Pointer Register (RIP)...12
 2.3.1.5 Flag Register (rFlags)..12
 2.3.1.6 XMM Registers..13

 2.3.2 Cache Memory..14
 2.4 Main Memory..15
 2.5 Memory Layout...17

Page iii

Table of Contents

 2.6 Memory Hierarchy..17
 2.7 Exercises..19

 2.7.1 Quiz Questions..19

 3.0 Data Representation...21
 3.1 Integer Representation...21

 3.1.1 Two's Complement..23
 3.1.2 Byte Example..23
 3.1.3 Word Example...24

 3.2 Unsigned and Signed Addition...24
 3.3 Floating-point Representation...24

 3.3.1 IEEE 32-bit Representation...25
 3.3.1.1 IEEE 32-bit Representation Examples..26

 3.3.1.1.1 Example → -7.7510...26
 3.3.1.1.2 Example → -0.12510...26
 3.3.1.1.3 Example → 4144000016...27

 3.3.2 IEEE 64-bit Representation...27
 3.3.3 Not a Number (NaN)...27

 3.4 Characters and Strings...28
 3.4.1 Character Representation...28

 3.4.1.1 American Standard Code for Information Interchange.....................28
 3.4.1.2 Unicode..29

 3.4.2 String Representation..29
 3.5 Exercises..29

 3.5.1 Quiz Questions..30

 4.0 Program Format...33
 4.1 Comments..33
 4.2 Numeric Values...33
 4.3 Defining Constants..34
 4.4 Data Section..34
 4.5 BSS Section...35
 4.6 Text Section...36
 4.7 Example Program..37
 4.8 Exercises..39

 4.8.1 Quiz Questions..39

 5.0 Tool Chain...41
 5.1 Assemble/Link/Load Overview..41
 5.2 Assembler..43

Page iv

Table of Contents

 5.2.1 Assemble Commands..43
 5.2.2 List File..43
 5.2.3 Two-Pass Assembler...45

 5.2.3.1 First Pass..46
 5.2.3.2 Second Pass..46

 5.2.4 Assembler Directives...47
 5.3 Linker..47

 5.3.1 Linking Multiple Files...48
 5.3.2 Linking Process...48
 5.3.3 Dynamic Linking...49

 5.4 Assemble/Link Script..50
 5.5 Loader..51
 5.6 Debugger...52
 5.7 Exercises..52

 5.7.1 Quiz Questions..52

 6.0 DDD Debugger..55
 6.1 Starting DDD...55

 6.1.1 DDD Configuration Settings...57
 6.2 Program Execution with DDD..57

 6.2.1 Setting Breakpoints...57
 6.2.2 Executing Programs...58

 6.2.2.1 Run / Continue...60
 6.2.2.2 Next / Step...60

 6.2.3 Displaying Register Contents..60
 6.2.4 DDD/GDB Commands Summary...62

 6.2.4.1 DDD/GDB Commands, Examples..64
 6.2.5 Displaying Stack Contents..65
 6.2.6 Interactive Debugger Commands File...65

 6.2.6.1 Debugger Commands File (non-interactive).....................................66
 6.2.6.2 Non-interactive Debugger Commands File.......................................67

 6.3 Exercises..67
 6.3.1 Quiz Questions..67
 6.3.2 Suggested Projects...68

 7.0 Instruction Set Overview..71
 7.1 Notational Conventions...71

 7.1.1 Operand Notation..72
 7.2 Data Movement...73

Page v

Table of Contents

 7.3 Addresses and Values..75
 7.4 Conversion Instructions...76

 7.4.1 Narrowing Conversions...76
 7.4.2 Widening Conversions..76

 7.4.2.1 Unsigned Conversions...77
 7.4.2.2 Signed Conversions...78

 7.5 Integer Arithmetic Instructions...80
 7.5.1 Addition...80

 7.5.1.1 Addition with Carry...83
 7.5.2 Subtraction...86
 7.5.3 Integer Multiplication..89

 7.5.3.1 Unsigned Multiplication..89
 7.5.3.2 Signed Multiplication..93

 7.5.4 Integer Division...97
 7.6 Logical Instructions...104

 7.6.1 Logical Operations..105
 7.6.2 Shift Operations...106

 7.6.2.1 Logical Shift..106
 7.6.2.2 Arithmetic Shift...108

 7.6.3 Rotate Operations..110
 7.7 Control Instructions...111

 7.7.1 Labels..112
 7.7.2 Unconditional Control Instructions...112
 7.7.3 Conditional Control Instructions...112

 7.7.3.1 Jump Out of Range..115
 7.7.4 Iteration..118

 7.8 Example Program, Sum of Squares...120
 7.9 Exercises..121

 7.9.1 Quiz Questions..121
 7.9.2 Suggested Projects...125

 8.0 Addressing Modes...129
 8.1 Addresses and Values..129

 8.1.1 Register Mode Addressing..130
 8.1.2 Immediate Mode Addressing..130
 8.1.3 Memory Mode Addressing..130

 8.2 Example Program, List Summation..133
 8.3 Example Program, Pyramid Areas and Volumes..135
 8.4 Exercises..140

Page vi

Table of Contents

 8.4.1 Quiz Questions..140
 8.4.2 Suggested Projects...143

 9.0 Process Stack...145
 9.1 Stack Example...145
 9.2 Stack Instructions..146
 9.3 Stack Implementation..147

 9.3.1 Stack Layout..147
 9.3.2 Stack Operations..149

 9.4 Stack Example...151
 9.5 Exercises..152

 9.5.1 Quiz Questions..152
 9.5.2 Suggested Projects...153

 10.0 Program Development..155
 10.1 Understand the Problem..155
 10.2 Create the Algorithm...156
 10.3 Implement the Program...158
 10.4 Test/Debug the Program..160
 10.5 Error Terminology...161

 10.5.1 Assembler Error...161
 10.5.2 Run-time Error...161
 10.5.3 Logic Error..162

 10.6 Exercises..162
 10.6.1 Quiz Questions..162
 10.6.2 Suggested Projects...162

 11.0 Macros..165
 11.1 Single-Line Macros...165
 11.2 Multi-Line Macros..166

 11.2.1 Macro Definition...166
 11.2.2 Using a Macro...166

 11.3 Macro Example...167
 11.4 Debugging Macros..169
 11.5 Exercises..169

 11.5.1 Quiz Questions..169
 11.5.2 Suggested Projects...170

 12.0 Functions..171
 12.1 Updated Linking Instructions..171

Page vii

Table of Contents

 12.2 Debugger Commands..172
 12.2.1 Debugger Command, next...172
 12.2.2 Debugger Command, step...172

 12.3 Stack Dynamic Local Variables..172
 12.4 Function Declaration...173
 12.5 Standard Calling Convention..173
 12.6 Linkage..174
 12.7 Argument Transmission..175
 12.8 Calling Convention...175

 12.8.1 Parameter Passing..176
 12.8.2 Register Usage...177
 12.8.3 Call Frame...178

 12.8.3.1 Red Zone..180
 12.9 Example, Statistical Function 1 (leaf)...180

 12.9.1 Caller...181
 12.9.2 Callee...181

 12.10 Example, Statistical Function2 (non-leaf)...183
 12.10.1 Caller...183
 12.10.2 Callee...184

 12.11 Stack-Based Local Variables..187
 12.12 Summary...190
 12.13 Exercises..192

 12.13.1 Quiz Questions..192
 12.13.2 Suggested Projects...193

 13.0 System Services...197
 13.1 Calling System Services..197
 13.2 Newline Character...198
 13.3 Console Output..199

 13.3.1 Example, Console Output..200
 13.4 Console Input..203

 13.4.1 Example, Console Input..204
 13.5 File Open Operations..208

 13.5.1 File Open...209
 13.5.2 File Open/Create..210

 13.6 File Read...211
 13.7 File Write...211
 13.8 File Operations Examples...212

 13.8.1 Example, File Write...212

Page viii

Table of Contents

 13.8.2 Example, File Read...217
 13.9 Exercises..223

 13.9.1 Quiz Questions..223
 13.9.2 Suggested Projects...223

 14.0 Multiple Source Files..225
 14.1 Extern Statement...225
 14.2 Example, Sum and Average..226

 14.2.1 Assembly Main..226
 14.2.2 Function Source...228
 14.2.3 Assemble and Link..229

 14.3 Interfacing with a High-Level Language..230
 14.3.1 Example, C++ Main / Assembly Function..230
 14.3.2 Compile, Assemble, and Link...232

 14.4 Exercises..232
 14.4.1 Quiz Questions..233
 14.4.2 Suggested Projects...233

 15.0 Stack Buffer Overflow..235
 15.1 Understanding a Stack Buffer Overflow...236
 15.2 Code to Inject..237
 15.3 Code Injection...240
 15.4 Code Injection Protections..241

 15.4.1 Data Stack Smashing Protector (or Canaries).......................................242
 15.4.2 Data Execution Prevention..242
 15.4.3 Data Address Space Layout Randomization...242

 15.5 Exercises..242
 15.5.1 Quiz Questions..242
 15.5.2 Suggested Projects...243

 16.0 Command Line Arguments..245
 16.1 Parsing Command Line Arguments..245
 16.2 High-Level Language Example..246
 16.3 Argument Count and Argument Vector Table..247
 16.4 Assembly Language Example...248
 16.5 Exercises..252

 16.5.1 Quiz Questions..252
 16.5.2 Suggested Projects...252

 17.0 Input/Output Buffering..255

Page ix

Table of Contents

 17.1 Why Buffer?..255
 17.2 Buffering Algorithm..257
 17.3 Exercises..260

 17.3.1 Quiz Questions..260
 17.3.2 Suggested Projects...261

 18.0 Floating-Point Instructions..263
 18.1 Floating-Point Values..263
 18.2 Floating-Point Registers..264
 18.3 Data Movement...264
 18.4 Integer / Floating-Point Conversion Instructions..266
 18.5 Floating-Point Arithmetic Instructions..268

 18.5.1 Floating-Point Addition...268
 18.5.2 Floating-Point Subtraction...270
 18.5.3 Floating-Point Multiplication..271
 18.5.4 Floating-Point Division...273
 18.5.5 Floating-Point Square Root...275

 18.6 Floating-Point Control Instructions...277
 18.6.1 Floating-Point Comparison...277

 18.7 Floating-Point Calling Conventions..281
 18.8 Example Program, Sum and Average...281
 18.9 Example Program, Absolute Value...283
 18.10 Exercises..284

 18.10.1 Quiz Questions..284
 18.10.2 Suggested Projects...284

 19.0 Parallel Processing..287
 19.1 Distributed Computing..288
 19.2 Multiprocessing...288

 19.2.1 POSIX Threads..289
 19.2.2 Race Conditions...290

 19.3 Exercises..293
 19.3.1 Quiz Questions..293
 19.3.2 Suggested Projects...294

 20.0 Interrupts...295
 20.1 Multi-user Operating System..295

 20.1.1 Interrupt Classification..296
 20.1.2 Interrupt Timing..296

 20.1.2.1 Asynchronous Interrupts..296

Page x

Table of Contents

 20.1.2.2 Synchronous Interrupts..296
 20.1.3 Interrupt Categories...297

 20.1.3.1 Hardware Interrupt...297
 20.1.3.1.1 Exceptions..297

 20.1.3.2 Software Interrupts..298
 20.2 Interrupt Types and Levels..298

 20.2.1 Interrupt Types..298
 20.2.2 Privilege Levels...299

 20.3 Interrupt Processing...300
 20.3.1 Interrupt Service Routine (ISR)...300
 20.3.2 Processing Steps..301

 20.3.2.1 Suspension...301
 20.3.2.2 Obtaining ISR Address..301
 20.3.2.3 Jump to ISR...301
 20.3.2.4 Suspension Execute ISR..302
 20.3.2.5 Resumption..302

 20.4 Suspension Interrupt Processing Summary...302
 20.5 Exercises..304

 20.5.1 Quiz Questions..304
 20.5.2 Suggested Projects...305

 21.0 Appendix A – ASCII Table..307

 22.0 Appendix B – Instruction Set Summary...309
 22.1 Notation...309
 22.2 Data Movement Instructions...310
 22.3 Data Conversion instructions..310
 22.4 Integer Arithmetic Instructions...311
 22.5 Logical, Shift, and Rotate Instructions..313
 22.6 Control Instructions...315
 22.7 Stack Instructions..317
 22.8 Function Instructions...317
 22.9 Floating-Point Data Movement Instructions...317
 22.10 Floating-Point Data Conversion Instructions..318
 22.11 Floating-Point Arithmetic Instructions..319
 22.12 Floating-Point Control Instructions...323

 23.0 Appendix C – System Services...325
 23.1 Return Codes...325
 23.2 Basic System Services...325

Page xi

Table of Contents

 23.3 File Modes...327
 23.4 Error Codes...328

 24.0 Appendix D – Quiz Question Answers..331
 24.1 Quiz Question Answers, Chapter 1...331
 24.2 Quiz Question Answers, Chapter 2...331
 24.3 Quiz Question Answers, Chapter 3...332
 24.4 Quiz Question Answers, Chapter 4...334
 24.5 Quiz Question Answers, Chapter 5...335
 24.6 Quiz Question Answers, Chapter 6...336
 24.7 Quiz Question Answers, Chapter 7...337
 24.8 Quiz Question Answers, Chapter 8...340
 24.9 Quiz Question Answers, Chapter 9...341
 24.10 Quiz Question Answers, Chapter 10...341
 24.11 Quiz Question Answers, Chapter 11...342
 24.12 Quiz Question Answers, Chapter 12...342
 24.13 Quiz Question Answers, Chapter 13...343
 24.14 Quiz Question Answers, Chapter 14...343
 24.15 Quiz Question Answers, Chapter 15...344
 24.16 Quiz Question Answers, Chapter 16...344
 24.17 Quiz Question Answers, Chapter 17...345
 24.18 Quiz Question Answers, Chapter 18...345
 24.19 Quiz Question Answers, Chapter 19...346
 24.20 Quiz Question Answers, Chapter 20...346

 25.0 Alphabetical Index..349

Page xii

Table of Contents

Illustration Index
Illustration 1: Computer Architecture..7
Illustration 2: CPU Block Diagram..15
Illustration 3: Little-Endian Data Layout...16
Illustration 4: General Memory Layout...17
Illustration 5: Memory Hierarchy..18
Illustration 6: Overview: Assemble, Link, Load...42
Illustration 7: Little-Endian, Multiple Variable Data Layout..44
Illustration 8: Linking Multiple Files...49
Illustration 9: Initial Debugger Screen...56
Illustration 10: Debugger Screen with Breakpoint Set..58
Illustration 11: Debugger Screen with Green Arrow...59
Illustration 12: DDD Command Bar..60
Illustration 13: Register Window...61
Illustration 14: MOV Instruction Overview..73
Illustration 15: Integer Multiplication Overview...90
Illustration 16: Integer Division Overview..99
Illustration 17: Logical Operations..105
Illustration 18: Logical Shift Overview...107
Illustration 19: Logical Shift Operations...107
Illustration 20: Arithmetic Left Shift...109
Illustration 21: Arithmetic Right Shift...109
Illustration 22: Process Memory Layout..148
Illustration 23: Process Memory Layout Example..149
Illustration 24: Stack Frame Layout..179
Illustration 25: Stack Frame Layout with Red Zone..180
Illustration 26: Stack Call Frame Example..236
Illustration 27: Stack Call Frame Corruption...241
Illustration 28: Argument Vector Layout..248
Illustration 29: Privilege Levels...300
Illustration 30: Interrupt Processing Overview..303

Page xiii

Table of Contents

Page xiv

 1.0 Introduction
The purpose of this text is to provide a reference for University level assembly language
and systems programming courses. Specifically, this text addresses the x86-641

instruction set for the popular x86-64 class of processors using the Ubuntu 64-bit
Operating System (OS). While the provided code and various examples should work
under any Linux-based 64-bit OS, they have only been tested under Ubuntu 14.04 LTS
(64-bit).

The x86-64 is a Complex Instruction Set Computing (CISC2) CPU design. This refers
to the internal processor design philosophy. CISC processors typically include a wide
variety of instructions (sometimes overlapping), varying instructions sizes, and a wide
range of addressing modes. The term was retroactively coined in contrast to Reduced
Instruction Set Computer (RISC3).

 1.1 Prerequisites
It must be noted that the text is not geared toward learning how to program. It is
assumed that the reader has already become proficient in a high-level programming
language. Specifically, the text is generally geared toward a compiled, C-based high-
level language such as C, C++, or Java. Many of the explanations and examples assume
the reader is already familiar with programming concepts such as declarations,
arithmetic operations, control structures, iteration, function calls, functions, indirection
(i.e., pointers), and variable scoping issues.

Additionally, the reader should be comfortable using a Linux-based operating system
including using the command line. If the reader is new to Linux, the Additional
References section has links to some useful documentation.

1 For more information, refer to: http://en.wikipedia.org/wiki/X86-64
2 For more information, refer to: http://en.wikipedia.org/wiki/Complex_instruction_set_computing
3 For more information, refer to: http://en.wikipedia.org/wiki/Reduced_instruction_set_computing

Page 1

Chapter
1

If you give someone a program, you will
frustrate them for a day; if you teach them
to program, you will frustrate them for a
lifetime.

Chapter 1.0 ◄ Introduction

 1.2 What is Assembly Language
The typical question asked by students is 'why learn assembly?'. Before addressing that
question, let's clarify what exactly assembly language is.

Assembly language is machine specific. For example, code written for an x86-64
processor will not run on a different processor such as a RISC processor (popular in
tablets and smart-phones).

Assembly language is a “low-level” language and provides the basic instructional
interface to the computer processor. Assembly language is as close to the processor as
you can get as a programmer. Programs written in a high-level language are translated
into assembly language in order for the processor to execute the program. The high-
level language is an abstraction between the language and the actual processor
instructions. As such, the idea that “assembly is dead” is nonsense.

Assembly language gives you direct control of the system's resources. This involves
setting processor registers, accessing memory locations, and interfacing with other
hardware elements. This requires a significantly deeper understanding of exactly how
the processor and memory work.

 1.3 Why Learn Assembly Language
The goal of this text is to provide a comprehensive introduction to programming in
assembly language. The reasons for learning assembly language are more about
understanding how a computer works instead of developing large programs. Since
assembly language is machine specific, the lack of portability is very limiting for
programming projects.

The process of actually learning assembly language involves writing non-trivial
programs to perform specific low-level actions including arithmetic operations, function
calls, using stack-dynamic local variables, and operating system interaction for activities
such as input/output. Just looking at small assembly language programs will not be
enough.

In the long run, learning the underlying principles, including assembly language, is what
makes the difference between a coding technician unable to cope with changing
languages and a computer scientist who is able to adapt to the ever-changing
technologies.

The following sections provide some detail on the various, more specific reasons for
learning assembly language.

Page 2

Chapter 1.0 ◄ Introduction

 1.3.1 Gain a Better Understanding of Architecture Issues
Learning and spending some time working at the assembly language level provides a
richer understanding of the underlying computer architecture. This includes the basic
instruction set, processor registers, memory addressing, hardware interfacing, and
Input/Output. Since ultimately all programs execute at this level, knowing the
capabilities of assembly language provides useful insights into what is possible, what is
easy, and what might be more difficult or slower.

 1.3.2 Understanding the Tool Chain
The tool chain is the name for the process of taking code written by a human and
converting it into something that the computer can directly execute. This includes the
compiler, or assembler in our case, the linker, the loader, and the debugger. In reference
to compiling, beginning programmers are told “just do this” with little explanation of the
complexity involved in the process. Working at the low-level can help provide the basis
for understanding and appreciating the details of the tool chain.

 1.3.3 Improve Algorithm Development Skills
Working with assembly language and writing low-level programs helps programmers
improve algorithm development skills by practicing with a language that requires more
thought and more attention to detail. In the highly unlikely event that a program does
not work the first time, debugging assembly language also provides practice debugging
and requires a more nuanced approach since just adding a bunch of output statements is
more difficult at the assembly language level. This typically involves a more
comprehensive use of a debugger which is a useful skill for any programmer.

 1.3.4 Improve Understanding of Functions/Procedures
Working with assembly language provides a greatly improved understanding of how
function/procedure calls work. This includes the contents and structure of the function
call frame, also referred to as the activation record. Depending on the specific instance,
the activation record might include stack-based arguments, preserved registers, and/or
stack dynamic local variables. There are some significant implementation and security
implications regarding stack dynamic local variables that are best understood working at
a low-level. Due to the security implications, it would be appropriate to remind readers
to always use their powers for good. Additionally, use of the stack and the associated
call frame is the basis for recursion and understanding the fairly straightforward
implementation of recursive functions.

Page 3

Chapter 1.0 ◄ Introduction

 1.3.5 Gain an Understanding of I/O Buffering
In a high-level language, input/output instructions and the associated buffering
operations can appear magical. Working at the assembly language level and performing
some low-level input/output operations provides a more detailed understanding of how
input/output and buffering really works. This includes the differences between
interactive input/output, file input/output, and the associated operating system services.

 1.3.6 Understand Compiler Scope
Programming with assembly language, after having already learned a high-level
language, helps ensure programmers understand the scope and capabilities of a
compiler. Specifically, this means learning what the compiler does and does not do in
relation to the computer architecture.

 1.3.7 Introduction Multi-processing Concepts
This text will also provide a brief introduction to multi-processing concepts. The
general concepts of distributed and multi-core programming are presented with the
focus being placed on shared memory, threaded processing. It is the author’s belief that
truly understanding the subtle issues associated with threading such as shared memory
and race conditions is most easily understood at the low-level.

 1.3.8 Introduction Interrupt Processing Concepts
The underlying fundamental mechanism in which modern multi-user computers work is
based on interrupts. Working at a low-level is the best place to provide an introduction
to the basic concepts associated with interrupt handling, interrupt service handles, and
vector interrupts.

 1.4 Additional References
Some key references for additional information are noted in the following sections.
These references provide much more extensive and detailed information.

If any of these locations change, a web search will be able to find the new location.

Page 4

Chapter 1.0 ◄ Introduction

 1.4.1 Ubuntu References
There is significant documentation available for the Ubuntu OS. The principal user
guide is as follows:

◦ Ubuntu Community Wiki

◦ Getting Started with Ubuntu 1 6 .04

In addition, there are many other sites dedicated to providing help using Ubuntu (or
other Linux-based OS's).

 1.4.2 BASH Command Line References
BASH is the default shell for Ubuntu. The reader should be familiar with basic
command line operations. Some additional references are as follows:

◦ Linux Command Line (on-line Tutorial and text)

◦ An Introduction to the Linux Command Shell For Beginners (pdf)

In addition, there are many other sites dedicated to providing information regarding the
BASH command shell.

 1.4.3 Architecture References
Some key references published by Intel provide a detailed technical description of the
architecture and programming environment of Intel processors supporting IA-32 and
Intel 64 Architectures.

◦ Intel® 64 and IA-32 Architectures Software Developer's Manual: Basic
Architecture.

◦ Intel 64 and IA-32 Architectures Software Developer's Manual: Instruction
Set Reference.

◦ Intel 64 and IA-32 Architectures Software Developer's Manual: System
Programming Guide.

If the embedded links do not work, an Internet search can help find the new location.

 1.4.4 Tool Chain References
The tool chain includes the assembler, linker, loader, and debugger. Chapter 5, Tool
Chain, provides an overview of the tool chain being used in this text. The following
references provide more detailed information and documentation.

Page 5

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf
http://vic.gedris.org/Manual-ShellIntro/1.2/ShellIntro.pdf
http://linuxcommand.org/index.php
http://files.ubuntu-manual.org/manuals/getting-started-with-ubuntu/16.04/en_US/screen/Getting%20Started%20with%20Ubuntu%2016.04.pdf
http://files.ubuntu-manual.org/manuals/getting-started-with-ubuntu/16.04/en_US/screen/Getting%20Started%20with%20Ubuntu%2016.04.pdf
http://files.ubuntu-manual.org/manuals/getting-started-with-ubuntu/16.04/en_US/screen/Getting%20Started%20with%20Ubuntu%2016.04.pdf
https://help.ubuntu.com/community/CommunityHelpWiki

Chapter 1.0 ◄ Introduction

 1.4.4.1 YASM References

The YASM assembler is an open source assembler commonly available on Linux-based
systems. The YASM references are as follows:

◦ Yasm Web Site

◦ Yasm Documentation

Additional information regarding YASM may be available a number of assembly
language sites and can be found through an Internet search.

 1.4.4.2 DDD Debugger References

The DDD debugger is an open source debugger capable of supporting assembly
language.

◦ DDD Web Site

◦ DDD Documentation

Additional information regarding DDD may be at a number of assembly language sites
and can be found through an Internet search.

Page 6

http://www.gnu.org/software/ddd/manual/
http://www.gnu.org/software/ddd/
http://yasm.tortall.net/Guide.html
http://yasm.tortall.net/

 2.0 Architecture Overview
This chapter presents a basic, general overview of the x86-64 architecture. For a more
detailed explanation, refer to the additional references noted in Chapter 1, Introduction.

 2.1 Architecture Overview
The basic components of a computer include a Central Processing Unit (CPU), Primary
Storage or Random Access Memory (RAM), Secondary Storage, Input/Output devices
(e.g., screen, keyboard, mouse), and an interconnection referred to as the Bus.

A very basic diagram of the computer architecture is as follows:

Page 7

Illustration 1: Computer Architecture

Chapter
2

Warning, keyboard not found. Press enter
to continue.

Screen / Keyboard /
Mouse

Secondary Storage
(i.e., SSD / Disk Drive /
Other Storage Media)

Primary Storage
Random Access
Memory (RAM)

CPU

BUS

(Interconnection)

Chapter 2.0 ◄ Architecture Overview

The architecture is typically referred to as the Von Neumann Architecture4, or the
Princeton architecture, and was described in 1945 by the mathematician and physicist
John von Neumann.

Programs and data are typically stored on secondary storage (e.g., disk drive or solid
state drive). When a program is executed, it must be copied from secondary storage into
the primary storage or main memory (RAM). The CPU executes the program from
primary storage or RAM.

Primary storage or main memory is also referred to as volatile memory since when
power is removed, the information is not retained and thus lost. Secondary storage is
referred to as non-volatile memory since the information is retained when powered off.

For example, consider storing a term paper on secondary storage (i.e., disk). When the
user starts to write or edit the term paper, it is copied from the secondary storage
medium into primary storage (i.e., RAM or main memory). When done, the updated
version is typically stored back to the secondary storage (i.e., disk). If you have ever
lost power while editing a document (assuming no battery or uninterruptible power
supply), losing the unsaved work will certainly clarify the difference between volatile
and non-volatile memory.

 2.2 Data Storage Sizes
The x86-64 architecture supports a specific set of data storage size elements, all based
on powers of two. The supported storage sizes are as follows:

Storage Size (bits) Size (bytes)

Byte 8-bits 1 byte

Word 16-bits 2 bytes

Double-word 32-bits 4 bytes

Quadword 64-bits 8 bytes

Double quadword 128-bits 16 bytes

Lists or arrays (sets of memory) can be reserved in any of these types.

These storage sizes have a direct correlation to variable declarations in high-level
languages (e.g., C, C++, Java, etc.).

4 For more information, refer to: http://en.wikipedia.org/wiki/Von_Neumann_architecture

Page 8

Chapter 2.0 ◄ Architecture Overview

For example, C/C++ declarations are mapped as follows:

C/C++ Declaration Storage Size (bits) Size (bytes)

char Byte 8-bits 1 byte

short Word 16-bits 2 bytes

int Double-word 32-bits 4 bytes

unsigned int Double-word 32-bits 4 bytes

long5 Quadword 64-bits 8 bytes

long long Quadword 64-bits 8 bytes

char * Quadword 64-bits 8 bytes

int * Quadword 64-bits 8 bytes

float Double-word 32-bits 4 bytes

double Quadword 64-bits 8 bytes

The asterisk indicates an address variable. For example, int * means the address of
an integer. Other high-level languages typically have similar mappings.

 2.3 Central Processing Unit
The Central Processing Unit6 (CPU) is typically referred to as the “brains” of the
computer since that is where the actual calculations are performed. The CPU is housed
in a single chip, sometimes called a processor, chip, or die7. The cover image shows one
such CPU.

The CPU chip includes a number of functional units, including the Arithmetic Logic
Unit8 (ALU) which is the part of the chip that actually performs the arithmetic and
logical calculations. In order to support the ALU, processor registers9 and cache10

memory are also included “on the die” (term for inside the chip). The CPU registers and
cache memory are described in subsequent sections.

5 Note, the 'long' type declaration is compiler dependent. Type shown is for gcc and g++ compilers.
6 For more information, refer to: http://en.wikipedia.org/wiki/Central_processing_unit
7 For more information, refer to: http://en.wikipedia.org/wiki/Die_(integrated_circuit)
8 For more information, refer to: http://en.wikipedia.org/wiki/Arithmetic_logic_unit
9 For more information, refer to: http://en.wikipedia.org/wiki/Processor_register
10 For more information, refer to: http://en.wikipedia.org/wiki/Cache_(computing)

Page 9

Chapter 2.0 ◄ Architecture Overview

It should be noted that the internal design of a modern processor is quite complex. This
section provides a very simplified, high-level view of some key functional units within a
CPU. Refer to the footnotes or additional references for more information.

 2.3.1 CPU Registers
A CPU register, or just register, is a temporary storage or working location built into the
CPU itself (separate from memory). Computations are typically performed by the CPU
using registers.

 2.3.1.1 General Purpose Registers (GPRs)

There are sixteen, 64-bit General Purpose Registers (GPRs). The GPRs are described in
the following table. A GPR register can be accessed with all 64-bits or some portion or
subset accessed.

64-bit register Lowest
32-bits

Lowest
16-bits

Lowest
8-bits

rax eax ax al
rbx ebx bx bl
rcx ecx cx cl
rdx edx dx dl
rsi esi si sil
rdi edi di dil
rbp ebp bp bpl
rsp esp sp spl
r8 r8d r8w r8b
r9 r9d r9w r9b
r10 r10d r10w r10b
r11 r11d r11w r11b
r12 r12d r12w r12b
r13 r13d r13w r13b
r14 r14d r14w r14b
r15 r15d r15w r15b

Page 10

Chapter 2.0 ◄ Architecture Overview

Additionally, some of the GPR registers are used for dedicated purposes as described in
the later sections.

When using data element sizes less than 64-bits (i.e., 32-bit, 16-bit, or 8-bit), the lower
portion of the register can be accessed by using a different register name as shown in the
table.

For example, when accessing the lower portions of the 64-bit rax register, the layout is
as follows:

 ← eax →

 ← ax →

 rax = ah al

As shown in the diagram, the first four registers, rax, rbx, rcx, and rdx also allow the
bits 8-15 to be accessed with the ah, bh, ch, and dh register names. With the exception
of ah, these are provided for legacy support and will not be used in this text.

The ability to access portions of the register means that, if the quadword rax register is
set to 50,000,000,00010 (fifty billion), the rax register would contain the following value
in hex.

rax = 0000 000B A43B 7400

If a subsequent operation sets the word ax register to 50,00010 (fifty thousand, which is
C35016), the rax register would contain the following value in hex.

rax = 0000 000B A43B C350

In this case, when the lower 16-bit ax portion of the 64-bit rax register is set, the upper
48-bits are unaffected. Note the change in ax (from 740016 to C35016).

If a subsequent operation sets the byte sized al register to 5010 (fifty, which is 3216), the
rax register would contain the following value in hex.

rax = 0000 000B A43B C332

When the lower 8-bit al portion of the 64-bit rax register is set, the upper 56-bits are
unaffected. Note the change in al (from 5016 to 3216).

For 32-bit register operations, the upper 32-bits is cleared (set to zero). Generally, this
is not an issue since operations on 32-bit registers do not use the upper 32-bits of the
register. For unsigned values, this can be useful to convert from 32-bits to 64-bits.

Page 11

Chapter 2.0 ◄ Architecture Overview

However, this will not work for signed conversions from 32-bit to 64-bit values.
Specifically, it will potentially provide incorrect results for negative values. Refer to
Chapter 3, Data Representation for additional information regarding the representation
of signed values.

 2.3.1.2 Stack Pointer Register (RSP)

One of the CPU registers, rsp, is used to point to the current top of the stack. The rsp
register should not be used for data or other uses. Additional information regarding the
stack and stack operations is provided in Chapter 9, Process Stack.

 2.3.1.3 Base Pointer Register (RBP)

One of the CPU registers, rbp, is used as a base pointer during function calls. The rbp
register should not be used for data or other uses. Additional information regarding the
functions and function calls is provided in Chapter 12, Functions.

 2.3.1.4 Instruction Pointer Register (RIP)

In addition to the GPRs, there is a special register, rip, which is used by the CPU to
point to the next instruction to be executed. Specifically, since the rip points to the
next instruction, that means the instruction being pointed to by rip, and shown in the
debugger, has not yet been executed. This is an important distinction which can be
confusing when reviewing code in a debugger.

 2.3.1.5 Flag Register (rFlags)

The flag register, rFlags, is used for status and CPU control information. The rFlag
register is updated by the CPU after each instruction and not directly accessible by
programs. This register stores status information about the instruction that was just
executed. Of the 64-bits in the rFlag register, many are reserved for future use.

The following table shows some of the status bits in the flag register.

Name Symbol Bit Use

Carry CF 0 Used to indicate if the previous operation
resulted in a carry.

Parity PF 2 Used to indicate if the last byte has an even
number of 1's (i.e., even parity).

Adjust AF 4 Used to support Binary Coded Decimal
operations.

Page 12

Chapter 2.0 ◄ Architecture Overview

Zero ZF 6 Used to indicate if the previous operation
resulted in a zero result.

Sign SF 7 Used to indicate if the result of the
previous operation resulted in a 1 in the
most significant bit (indicating negative in
the context of signed data).

Direction DF 10 Used to specify the direction (increment or
decrement) for some string operations.

Overflow OF 11 Used to indicate if the previous operation
resulted in an overflow.

There are a number of additional bits not specified in this text. More information can be
obtained from the additional references noted in Chapter 1, Introduction.

 2.3.1.6 XMM Registers

There are a set of dedicated registers used to support 64-bit and 32-bit floating-point
operations and Single Instruction Multiple Data (SIMD) instructions. The SIMD
instructions allow a single instruction to be applied simultaneously to multiple data
items. Used effectively, this can result in a significant performance increase. Typical
applications include some graphics processing and digital signal processing.

The XMM registers as follows:

128-bit Registers
xmm0
xmm1
xmm2
xmm3
xmm4
xmm5
xmm6
xmm7
xmm8
xmm9

Page 13

Chapter 2.0 ◄ Architecture Overview

xmm10
xmm11
xmm12
xmm13
xmm14
xmm15

Note, some of the more recent X86-64 processors support 256-bit XMM registers. This
will not be an issue for the programs in this text.

Additionally, the XMM registers are used to support the Streaming SIMD Extensions
(SSE). The SSE instructions are out of the scope of this text. More information can be
obtained from the Intel references (as noted in Chapter 1, Introduction).

 2.3.2 Cache Memory
Cache memory is a small subset of the primary storage or RAM located in the CPU
chip. If a memory location is accessed, a copy of the value is placed in the cache.
Subsequent accesses to that memory location that occur in quick succession are
retrieved from the cache location (internal to the CPU chip). A memory read involves
sending the address via the bus to the memory controller, which will obtain the value at
the requested memory location, and send it back through the bus. Comparatively, if a
value is in cache, it would be much faster to access that value.

A cache hit occurs when the requested data can be found in a cache, while a cache miss
occurs when it cannot. Cache hits are served by reading data from the cache, which is
faster than reading from main memory. The more requests that can be served from
cache, the faster the system will typically perform. Successive generations of CPU
chips have increased cache memory and improved cache mapping strategies in order to
improve overall performance.

Page 14

Chapter 2.0 ◄ Architecture Overview

A block diagram of a typical CPU chip configuration is as follows:

Current chip designs typically include an L1 cache per core and a shared L2 cache.
Many of the newer CPU chips will have an additional L3 cache.

As can be noted from the diagram, all memory accesses travel through each level of
cache. As such, there is a potential for multiple, duplicate copies of the value (CPU
register, L1 cache, L2 cache, and main memory). This complication is managed by the
CPU and is not something the programmer can change. Understanding the cache and
associated performance gain is useful in understanding how a computer works.

 2.4 Main Memory
Memory can be viewed as a series of bytes, one after another. That is, memory is byte
addressable. This means each memory address holds one byte of information. To store
a double-word, four bytes are required which use four memory addresses.

Page 15

Illustration 2: CPU Block Diagram

Core 0

L2 Cache

Core 1

L1 Cache L1 Cache

BUS

CPU Chip

Chapter 2.0 ◄ Architecture Overview

Additionally, architecture is little-endian. This means that the Least Significant Byte
(LSB) is stored in the lowest memory address. The Most Significant Byte (MSB) is
stored in the highest memory location.

For a double-word (32-bits), the MSB and LSB are allocated as shown below.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

For example, assuming the value of, 5,000,00010 (004C4B4016), is to be placed in a
double-word variable named var1.

For a little-endian architecture, the memory picture would be as follows:

Based on the little-endian architecture, the LSB is stored in the lowest memory address
and the MSB is stored in the highest memory location.

Page 16

variable
name

value Address
(in hex)

? 0100100C
00 0100100B
4C 0100100A
4B 01001009

var1 → 40 01001008
? 01001007

Illustration 3: Little-Endian Data Layout

Chapter 2.0 ◄ Architecture Overview

 2.5 Memory Layout
The general memory layout for a program is as shown:

The reserved section is not available to user programs. The text (or code) section is
where the machine language11 (i.e., the 1's and 0's that represent the code) is stored. The
data section is where the initialized data is stored. This includes declared variables that
have been provided an initial value at assemble-time. The uninitialized data section,
typically called BSS section, is where declared variables that have not been provided an
initial value are stored. If accessed before being set, the value will not be meaningful.
The heap is where dynamically allocated data will be stored (if requested). The stack
starts in high memory and grows downward.

Later sections will provide additional detail for the text and data sections.

 2.6 Memory Hierarchy
In order to fully understand the various different memory levels and associated usage, it
is useful to review the memory hierarchy12. In general terms, faster memory is more
expensive and slower memory blocks are less expensive. The CPU registers are small,

11 For more information, refer to: http://en.wikipedia.org/wiki/Machine_code
12 For more information, refer to: http://en.wikipedia.org/wiki/Memory_hierarchy

Page 17

high memory stack
.
.
.

heap
BSS – uninitialized data

data
text (code)

low memory reserved

Illustration 4: General Memory Layout

Chapter 2.0 ◄ Architecture Overview

fast, and expensive. Secondary storage devices such as disk drives and Solid State
Drives (SSD's) are larger, slower, and less expensive. The overall goal is to balance
performance with cost.

An overview of the memory hierarchy is as follows:

Where the top of the triangle represents the fastest, smallest, and most expensive
memory. As we move down levels, the memory becomes slower, larger, and less
expensive. The goal is to use an effective balance between the small, fast, expensive
memory and the large, slower, and cheaper memory.

Page 18

Illustration 5: Memory Hierarchy

CPU
Registers

Cache

Primary Storage
Main Memory (RAM)

Secondary Storage
(disk drives, SSD's, etc.)

Tertiary Storage
(remote storage, optical, backups, etc.)

Smaller, faster,
and more
expensive

Larger, slower,
and less expensive

Chapter 2.0 ◄ Architecture Overview

Some typical performance and size characteristics are as follows:

Memory Unit Example Size Typical Speed

Registers 16, 64-bit registers ~1 nanoseconds13

Cache Memory 4 - 8+ Megabytes14

(L1 and L2)
~5-60 nanoseconds

Primary Storage
 (i.e., main memory)

2 – 32+ Gigabytes15 ~100-150 nanoseconds

Secondary Storage
 (i.e., disk, SSD's, etc.)

500 Gigabytes –
 4+ Terabytes16

~3-15 milliseconds17

Based on this table, a primary storage access at 100 nanoseconds (100 ´ 10-9) is 30,000
times faster than a secondary storage access, at 3 milliseconds (3 ´ 10-3).

The typical speeds improve over time (and these are already out of date). The key point
is the relative difference between each memory unit is significant. This difference
between the memory units applies even as newer, faster SSDs are being utilized.

 2.7 Exercises
Below are some questions based on this chapter.

 2.7.1 Quiz Questions
Below are some quiz questions.

1) Draw a picture of the Von Neumann Architecture.

2) What architecture component connects the memory to the CPU?

3) Where are programs stored when the computer is turned off?

4) Where must programs be located when they are executing?

5) How does cache memory help overall performance?

6) How many bytes does a C++ integer declared with the declaration int use?

13 For more information, refer to: http://en.wikipedia.org/wiki/Nanosecond
14 For more information, refer to: http://en.wikipedia.org/wiki/Megabyte
15 For more information, refer to: http://en.wikipedia.org/wiki/Gigabyte
16 For more information, refer to: http://en.wikipedia.org/wiki/Terabyte
17 For more information, refer to: http://en.wikipedia.org/wiki/Millisecond

Page 19

Chapter 2.0 ◄ Architecture Overview

7) On the Intel X86-64 architecture, how many bytes can be stored at each address?

8) Given the 32-bit hex 004C4B4016 what is the:

1. Least Significant Byte (LSB)

2. Most Significant Byte (MSB)

9) Given the 32-bit hex 004C4B4016, show the little-endian memory layout showing
each byte in memory.

10) Draw a picture of the layout for the rax register.

11) How many bits does each of the following represent:

1. al

2. rcx

3. bx

4. edx

5. r11

6. r8b

7. sil

8. r14w

12) Which register points to the next instruction to be executed?

13) Which register points to the current top of the stack?

14) If al is set to 0516 and ax is set to 000716, eax is set to 0000002016, and rax is set
to 000000000000000016, and show the final complete contents of the complete
rax register.

15) If the rax register is set to 81,985,529,216,486,89510 (123456789ABCDEF16),
what are the contents of the following registers in hex?

1. al

2. ax

3. eax

4. rax

Page 20

 3.0 Data Representation
Data representation refers to how information is stored within the computer. There is a
specific method for storing integers which is different than storing floating-point values
which is different than storing characters. This chapter presents a brief summary of the
integer, floating-point, and ASCII representation schemes.

It is assumed the reader is already generally familiar with binary, decimal, and hex
numbering systems.

It should be noted that if not specified, a number is in base-10. Additionally, a number
preceded by 0x is a hex value. For example, 19 = 1910 = 1316 = 0x13.

 3.1 Integer Representation
Representing integer numbers refers to how the computer stores or represents a number
in memory. The computer represents numbers in binary (1's and 0's). However, the
computer has a limited amount of space that can be used for each number or variable.
This directly impacts the size, or range, of the number that can be represented. For
example, a byte (8-bits) can be used to represent 28 or 256 different numbers. Those
256 different numbers can be unsigned (all positive) in which case we can represent any
number between 0 and 255 (inclusive). If we choose signed (positive and negative
values), then we can represent any number between -128 and +127 (inclusive).

If that range is not large enough to handle the intended values, a larger size must be
used. For example, a word (16-bits) can be used to represent 216 or 65,536 different
values, and a double-word (32-bits) can be used to represent 232 or 4,294,967,296
different numbers. So, if you wanted to store a value of 100,000 then a double-word
would be required.

Page 21

Chapter
3

There are 10 types of people in the world;
those that understand binary and those that
don't.

Chapter 3.0 ◄ Data Representation

As you may recall from C, C++, or Java, an integer declaration (e.g., int <variable>) is
a single double-word which can be used to represent values between -231

(−2,147,483,648) and +231 - 1 (+2,147,483,647).

The following table shows the ranges associated with typical sizes:

Size Size Unsigned Range Signed Range

Bytes (8-bits) 28 0 to 255 -128 to +127

Words (16-bits) 216 0 to 65,535 −32,768 to +32,767

Double-words (32-bits) 232 0 to 4,294,967,295 −2,147,483,648 to
+2,147,483,647

Quadword 264 0 to 264 - 1 -(263) to 263 - 1

Double quadword 2128 0 to 2128 - 1 -(2127) to 2127 - 1

In order to determine if a value can be represented, you will need to know the size of the
storage element (byte, word, double-word, quadword, etc.) being used and if the values
are signed or unsigned.

• For representing unsigned values within the range of a given storage size,
standard binary is used.

• For representing signed values within the range, two's complement is used.
Specifically, the two's complement encoding process applies to the values in the
negative range. For values within the positive range, standard binary is used.

For example, the unsigned byte range can be represented using a number line as follows:

For example, the signed byte range can also be represented using a number line as
follows:

The same concept applies to halfwords and words which have larger ranges.

Page 22

2550

-128 0 +127

Chapter 3.0 ◄ Data Representation

Since unsigned values have a different, positive only, range than signed values, there is
overlap between the values. This can be very confusing when examining variables in
memory (with the debugger).

For example, when the unsigned and signed values are within the overlapping positive
range (0 to +127):

• A signed byte representation of 1210 is 0x0C16
• An unsigned byte representation of -1210 is also 0x0C16

When the unsigned and signed values are outside the overlapping range:

• A signed byte representation of -1510 is 0xF116
• An unsigned byte representation of 24110 is also 0xF116

This overlap can cause confusion unless the data types are clearly and correctly defined.

 3.1.1 Two's Complement
The following describes how to find the two's complement representation for negative
values (not positive values).

To take the two's complement of a number:

1. take the one's complement (negate)

2. add 1 (in binary)

The same process is used to encode a decimal value into two's complement and from
two's complement back to decimal. The following sections provide some examples.

 3.1.2 Byte Example
For example, to find the byte size (8-bits), two's complement representation of -9 and
-12.

9 (8+1) = 00001001 12 (8+4) = 00001100
Step 1 11110110 Step 1: 11110011
Step 2 11110111 11110100

-9 (in hex) = F7 -12 (in hex) = F4

Note, all bits for the given size, byte in this example, must be specified.

Page 23

Chapter 3.0 ◄ Data Representation

 3.1.3 Word Example
To find the word size (16-bits), two's complement representation of -18 and -40.

18 (16+2) = 0000000000010010 40 (32+8) = 0000000000101000
Step 1 1111111111101101 Step 1 1111111111010111
Step 2 1111111111101110 Step 2 1111111111011000

-18 (hex) = 0xFFEE -40 (hex) = 0xFFD8

Note, all bits for the given size, words in these examples, must be specified.

 3.2 Unsigned and Signed Addition
As previously noted, the unsigned and signed representations may provide different
interpretations for the final value being represented. However, the addition and
subtraction operations are the same. For example:

241 11110001 -15 11110001
+ 7 00000111 + 7 00000111

248 11111000 -8 11111000

248 = F8 -8 = F8

The final result of 0xF8 may be interpreted as 248 for unsigned representation and -8 for
a signed representation. Additionally, 0xF816 is the º (degree symbol) in the ASCII
table.

As such, it is very important to have a clear definition of the sizes (byte, halfword, word,
etc.) and types (signed, unsigned) of data for the operations being performed.

 3.3 Floating-point Representation
The representation issues for floating-point numbers are more complex. There are a
series of floating-point representations for various ranges of the value. For simplicity,
we will look primarily at the IEEE 754 32-bit floating-point standard.

Page 24

Chapter 3.0 ◄ Data Representation

 3.3.1 IEEE 32-bit Representation
The IEEE 754 32-bit floating-point standard is defined as follows:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s biased exponent fraction

Where s is the sign (0 => positive and 1 => negative). More formally, this can be
written as;

N = (−1)S × 1. F × 2E−127

When representing floating-point values, the first step is to convert floating-point value
into binary. The following table provides a brief reminder of how binary handles
fractional components:

23 22 21 20 2-1 2-2 2-3

... 8 4 2 1 . 1/2 1/4 1/8 ...

0 0 0 0 . 0 0 0

For example, 100.1012 would be 4.62510. For repeating decimals, calculating the binary
value can be time consuming. However, there is a limit since computers have finite
storage sizes (32-bits in this example).

The next step is to show the value in normalized scientific notation in binary. This
means that the number should have a single, non-zero leading digit to the left of the
decimal point. For example, 8.12510 is 1000.0012 (or 1000.0012 x 20) and in binary
normalized scientific notation that would be written as 1.000001 x 23 (since the decimal
point was moved three places to the left). Of course, if the number was 0.12510 the
binary would be 0.0012 (or 0.0012 x 20) and the normalized scientific notation would be
1.0 x 2-3 (since the decimal point was moved three places to the right). The numbers
after the leading 1, not including the leading 1, are stored left-justified in the fraction
portion of the double-word.

The next step is to calculate the biased exponent, which is the exponent from the
normalized scientific notation plus the bias. The bias for the IEEE 754 32-bit floating-
point standard is 12710. The result should be converted to a byte (8-bits) and stored in
the biased exponent portion of the word.

Page 25

Chapter 3.0 ◄ Data Representation

Note, converting from the IEEE 754 32-bit floating-point representation to the decimal
value is done in reverse, however leading 1 must be added back (as it is not stored in the
word). Additionally, the bias is subtracted (instead of added).

 3.3.1.1 IEEE 32-bit Representation Examples

This section presents several examples of encoding and decoding floating-point
representation for reference.

 3.3.1.1.1 Example → -7.7510

For example, to find the IEEE 754 32-bit floating-point representation for -7.7510:

Example 1: -7.75
• determine sign -7.75 => 1 (since negative)
• convert to binary -7.75 = -0111.112

• normalized scientific notation = 1.1111 x 22

• compute biased exponent 210 + 12710 = 12910
◦ and convert to binary = 100000012

• write components in binary:
sign exponent mantissa
 1 10000001 11110000000000000000000

• convert to hex (split into groups of 4)
 11000000111110000000000000000000
 1100 0000 1111 1000 0000 0000 0000 0000
 C 0 F 8 0 0 0 0

• final result: C0F8 000016

 3.3.1.1.2 Example → -0.12510

For example, to find the IEEE 754 32-bit floating-point representation for -0.12510:

Example 2: -0.125
• determine sign -0.125 => 1 (since negative)
• convert to binary -0.125 = -0.0012

• normalized scientific notation = 1.0 x 2-3

• compute biased exponent -310 + 12710 = 12410
◦ and convert to binary = 011111002

• write components in binary:
sign exponent mantissa
 1 01111100 00000000000000000000000

Page 26

Chapter 3.0 ◄ Data Representation

• convert to hex (split into groups of 4)
 10111110000000000000000000000000
 1011 1110 0000 0000 0000 0000 0000 0000
 B E 0 0 0 0 0 0

• final result: BE00 000016

 3.3.1.1.3 Example → 4144000016

For example, given the IEEE 754 32-bit floating-point representation 4144000016 find
the decimal value:

Example 3: 4144000016

• convert to binary
 0100 0001 0100 0100 0000 0000 0000 00002

• split into components
 0 10000010 100010000000000000000002

• determine exponent 100000102 = 13010
◦ and remove bias 13010 - 12710 = 310

• determine sign 0 => positive
• write result +1.10001 x 23 = +1100.01 = +12.25

 3.3.2 IEEE 64-bit Representation
The IEEE 754 64-bit floating-point standard is defined as follows:

63 62 52 51 0

s biased exponent fraction

The representation process is the same, however the format allows for an 11-bit biased
exponent (which support large and smaller values). The 11-bit biased exponent uses a
bias of ±1023.

 3.3.3 Not a Number (NaN)
When a value is interpreted as a floating-point value and it does not conform to the
defined standard (either for 32-bit or 64-bit), then it cannot be used as a floating-point
value. This might occur if an integer representation is treated as a floating-point
representation or a floating-point arithmetic operation (add, subtract, multiply, or divide)
results in a value that is too large or too small to be represented. The incorrect format or
unrepresentable number is referred to as a NaN which is an abbreviation for not a
number.

Page 27

Chapter 3.0 ◄ Data Representation

 3.4 Characters and Strings
In addition to numeric data, symbolic data is often required. Symbolic or non-numeric
data might include an important message such as “Hello World”18 a common greeting
for first programs. Such symbols are well understood by English language speakers.
Computer memory is designed to store and retrieve numbers. Consequently, the
symbols are represented by assigning numeric values to each symbol or character.

 3.4.1 Character Representation
In a computer, a character19 is a unit of information that corresponds to a symbol such as
a letter in the alphabet. Examples of characters include letters, numerical digits,
common punctuation marks (such as "." or "!"), and whitespace. The general concept
also includes control characters, which do not correspond to symbols in a particular
language, but to other information used to process text. Examples of control characters
include carriage return or tab.

 3.4.1.1 American Standard Code for Information Interchange

Characters are represented using the American Standard Code for Information
Interchange (ASCII20). Based on the ASCII table, each character and control character
is assigned a numeric value. When using ASCII, the character displayed is based on the
assigned numeric value. This only works if everyone agrees on common values, which
is the purpose of the ASCII table. For example, the letter “A” is defined as 65 10 (0x41).
The 0x41 is stored in computer memory, and when displayed to the console, the letter
“A” is shown. Refer to Appendix A for the complete ASCII table.

Additionally, numeric symbols can be represented in ASCII. For example, “9” is
represented as 5710 (0x39) in computer memory. The “9” can be displayed as output to
the console. If sent to the console, the integer value 910 (0x09) would be interpreted as
an ASCII value which in the case would be a tab.

It is very important to understand the difference between characters (such as “2”) and
integers (such a 210). Characters can be displayed to the console, but cannot be used for
calculations. Integers can be used for calculations, but cannot be displayed to the
console (without changing the representation).

A character is typically stored in a byte (8-bits) of space. This works well since memory
is byte addressable.

18 For more information, refer to: http://en.wikipedia.org/wiki/”Hello,_World!”_program
19 For more information, refer to: http://en.wikipedia.org/wiki/Character_(computing)
20 For more information, refer to: http://en.wikipedia.org/wiki/ASCII

Page 28

Chapter 3.0 ◄ Data Representation

 3.4.1.2 Unicode

It should be noted that Unicode21 is a current standard that includes support for different
languages. The Unicode Standard provides series of different encoding schemes (UTF-
8, UTF-16, UTF-32, etc.) in order to provide a unique number for every character, no
matter what platform, device, application or language. In the most common encoding
scheme, UTF-8, the ASCII English text looks exactly the same in UTF-8 as it did in
ASCII. Additional bytes are used for other characters as needed. Details regarding
Unicode representation are not addressed in this text.

 3.4.2 String Representation
A string22 is a series of ASCII characters, typically terminated with a NULL. The
NULL is a non-printable ASCII control character. Since it is not printable, it can be
used to mark the end of a string.

For example, the string “Hello” would be represented as follows:

Character “H” “e” “l” “l” “o” NULL

ASCII Value (decimal) 72 101 108 108 111 0

ASCII Value (hex) 0x48 0x65 0x6C 0x6C 0x6F 0x0

A string may consist partially or completely of numeric symbols. For example, the
string “19653” would be represented as follows:

Character “1” “9” “6” “5” “3” NULL

ASCII Value (decimal) 49 57 54 53 51 0

ASCII Value (hex) 0x31 0x39 0x36 0x35 0x33 0x0

Again, it is very important to understand the difference between the string “19653”
(using 6 bytes) and the single integer 19,65310 (which can be stored in a single word
which is 2 bytes).

 3.5 Exercises
Below are some questions based on this chapter.

21 For more information, refer to: http://en.wikipedia.org/wiki/Unicode
22 For more information, refer to: http://en.wikipedia.org/wiki/String_(computer_science)

Page 29

Chapter 3.0 ◄ Data Representation

 3.5.1 Quiz Questions
Below are some quiz questions.

1) Provide the range for each of the following:

1. signed byte

2. unsigned byte

3. signed word

4. unsigned word

5. signed double-word

6. unsigned double-word

2) Provide the decimal values of the following binary numbers:

1. 00001012

2. 00010012

3. 00011012

4. 00101012

3) Provide the hex, byte size, two's complement values of the following decimal
values. Note, two hex digits expected.

1. -310

2. +1110

3. -910

4. -2110

4) Provide the hex, word size, two's complement values of the following decimal
values. Note, four hex digits expected.

1. -1710

2. +1710

3. -3110

4. -13810

Page 30

Chapter 3.0 ◄ Data Representation

5) Provide the hex, double-word size, two's complement values of the following
decimal values. Note, eight hex digits expected.

1. -1110

2. -2710

3. +710

4. -26110

6) Provide the decimal values of the following hex, double-word sized, two's
complement values.

1. FFFFFFFB16

2. FFFFFFEA16

3. FFFFFFF316

4. FFFFFFF816

7) Which of the following decimal values has an exact representation in binary?

1. 0.1

2. 0.2

3. 0.3

4. 0.4

5. 0.5

8) Provide the decimal representation of the following IEEE 32-bit floating-point
values.

1. 0xC1440000

2. 0x41440000

3. 0xC0D00000

4. 0xC0F00000

Page 31

Chapter 3.0 ◄ Data Representation

9) Provide hex, IEEE 32-bit floating-point representation of the following floating-
point values.

1. +11.2510

2. -17.12510

3. +21.87510

4. -0.7510

10) What is the ASCII code, in hex, for each of the following characters:

1. “A”

2. “a”

3. “0”

4. “8”

5. tab

11) What are the ASCII values, in hex, for each of the following strings:

1. “World”

2. “123”

3. “Yes!?”

Page 32

 4.0 Program Format
This chapter summarizes the formatting requirements for assembly language programs.
The formatting requirements are specific to the yasm assembler. Other assemblers may
be slightly different. A complete assembly language program is presented to
demonstrate the appropriate program formatting.

A properly formatted assembly source file consists of several main parts;

• Data section where initialized data is declared and defined.

• BSS section where uninitialized data is declared.

• Text section where code is placed.

The following sections summarize the basic formatting requirements. Only the basic
formatting and assembler syntax are presented. For additional information, refer to the
yasm reference manual (as noted in Chapter 1, Introduction).

 4.1 Comments
The semicolon (;) is used to note program comments. Comments (using the ;) may be
placed anywhere, including after an instruction. Any characters after the ; are ignored
by the assembler. This can be used to explain steps taken in the code or to comment out
sections of code.

 4.2 Numeric Values
Number values may be specified in decimal, hex, or octal.

When specifying hex, or base-16 values, they are preceded with a 0x. For
example, to specify 127 as hex, it would be 0x7f.

When specifying octal, or-base-8 values, they are followed by a q. For example,

Page 33

Chapter
4

I would love to change the world, but they
won't give me the source code.

Chapter 4.0 ◄ Program Format

to specify 511 as octal, it would be 777q.

The default radix (base) is decimal, so no special notation is required for decimal (base-
10) numbers.

 4.3 Defining Constants
Constants are defined with equ. The general format is:

<name> equ <value>

The value of a constant cannot be changed during program execution.

The constants are substituted for their defined values during the assembly process. As
such, a constant is not assigned a memory location. This makes the constant more
flexible since it is not assigned a specific type/size (byte, word, double-word, etc.). The
values are subject to the range limitations of the intended use. For example, the
following constant,

SIZE equ 10000

could be used as a word or a double-word, but not a byte.

 4.4 Data Section
The initialized data must be declared in the "section .data" section. There must be a
space after the word 'section'. All initialized variables and constants are placed in this
section. Variable names must start with a letter, followed by letters or numbers,
including some special characters (such as the underscore, "_"). Variable definitions
must include the name, the data type, and the initial value for the variable.

The general format is:
<variableName> <dataType> <initialValue>

Refer to the following sections for a series of examples using various data types.

The supported data types are as follows:

Declaration
db 8-bit variable(s)

Page 34

Chapter 4.0 ◄ Program Format

dw 16-bit variable(s)

dd 32-bit variable(s)

dq 64-bit variable(s)

ddq 128-bit variable(s) → integer

dt 128-bit variable(s) → float

These are the primary assembler directives for initialized data declarations. Other
directives are referenced in different sections.

Initialized arrays are defined with comma separated values.

Some simple examples include:
bVar db 10 ; byte variable
cVar db "H" ; single character
strng db "Hello World" ; string
wVar dw 5000 ; 16-bit variable
dVar dd 50000 ; 32-bit variable
arr dd 100, 200, 300 ; 3 element array
flt1 dd 3.14159 ; 32-bit float
qVar dq 1000000000 ; 64-bit variable

The value specified must be able to fit in the specified data type. For example, if the
value of a byte sized variables is defined as 500, it would generate an assembler error.

 4.5 BSS Section
Uninitialized data is declared in the "section .bss" section. There must be a space after
the word 'section'. All uninitialized variables are declared in this section. Variable
names start with a letter followed by letters or numbers including some special
characters (such as the underscore, "_"). Variable definitions must include the name, the
data type, and the count.

The general format is:
<variableName> <resType> <count>

Refer to the following sections for a series of examples using various data types.

Page 35

Chapter 4.0 ◄ Program Format

The supported data types are as follows:

Declaration
resb 8-bit variable(s)

resw 16-bit variable(s)

resd 32-bit variable(s)

resq 64-bit variable(s)

resdq 128-bit variable(s)

These are the primary assembler directives for uninitialized data declarations. Other
directives are referenced in different sections.

Some simple examples include:
bArr resb 10 ; 10 element byte array
wArr resw 50 ; 50 element word array
dArr resd 100 ; 100 element double array
qArr resq 200 ; 200 element quad array

The allocated array is not initialized to any specific value.

 4.6 Text Section
The code is placed in the "section .text" section. There must be a space after the word
'section'. The instructions are specified one per line and each must be a valid instruction
with the appropriate required operands.

The text section will include some headers or labels that define the initial program entry
point. For example, assuming a basic program using the standard system linker, the
following declarations must be included.

global _start
_start:

No special label or directives are required to terminate the program. However, a system
service should be used to inform the operating system that the program should be
terminated and the resources, such as memory, recovered and re-utilized. Refer to the
example program in the following section.

Page 36

Chapter 4.0 ◄ Program Format

 4.7 Example Program
A very simple assembly language program is presented to demonstrate the appropriate
program formatting.

; Simple example demonstrating basic program format and layout.
; Ed Jorgensen
; July 18, 2014
; **
; Some basic data declarations
section .data
; -----
; Define constants
EXIT_SUCCESS equ 0 ; successful operation
SYS_exit equ 60 ; call code for terminate

; -----
; Byte (8-bit) variable declarations
bVar1 db 17
bVar2 db 9
bResult db 0
; -----
; Word (16-bit) variable declarations
wVar1 dw 17000
wVar2 dw 9000
wResult dw 0
; -----
; Double-word (32-bit) variable declarations
dVar1 dd 17000000
dVar2 dd 9000000
dResult dd 0

Page 37

Chapter 4.0 ◄ Program Format

; -----
; quadword (64-bit) variable declarations
qVar1 dq 170000000
qVar2 dq 90000000
qResult dq 0
; **
; Code Section
section .text
global _start
_start:
; Performs a series of very basic addition operations
; to demonstrate basic program format.
; ----------
; Byte example
; bResult = bVar1 + bVar2
 mov al, byte [bVar1]
 add al, byte [bVar2]
 mov byte [bResult], al
; ----------
; Word example
; wResult = wVar1 + wVar2
 mov ax, word [wVar1]
 add ax, word [wVar2]
 mov word [wResult], ax
; ----------
; Double-word example
; dResult = dVar1 + dVar2
 mov eax, dword [dVar1]
 add eax, dword [dVar2]
 mov dword [dResult], eax

Page 38

Chapter 4.0 ◄ Program Format

; ----------
; Quadword example
; qResult = qVar1 + qVar2
 mov rax, qword [qVar1]
 add rax, qword [qVar2]
 mov qword [qResult], rax

; **
; Done, terminate program.
last:
 mov rax, SYS_exit ; Call code for exit
 mov rdi, EXIT_SUCCESS ; Exit program with success
 syscall

This example program will be referenced and further explained in the following
chapters.

 4.8 Exercises
Below are some questions based on this chapter.

 4.8.1 Quiz Questions
Below are some quiz questions.

1) What is the name of the assembler being used in this chapter?

2) How are comments marked in an assembly language program?

3) What is the name of the section where the initialized data declared?

4) What is the name of the section where the uninitialized data declared?

5) What is the name of the section where the code is placed?

6) What is the data declaration for each of the following variables with the given
values:

1. byte sized variable bNum set to 1010

2. word sized variable wNum set to 10,29110

3. double-word sized variable dwNum set to 2,126,01010

Page 39

Chapter 4.0 ◄ Program Format

4. quadword sized variable qwNum set to 10,000,000,00010

7) What is the uninitialized data declaration for each of the following:

1. byte sized array named bArr with 100 elements

2. word sized array named wArr with 3000 elements

3. double-word sized array named dwArr with 200 elements

4. quadword sized array named qArr with 5000 elements

8) What are the required declarations to signify the start of a program (in the text
section)?

Page 40

 5.0 Tool Chain
In general, the set of programming tools used to create a program is referred to as the
tool chain23. For the purposes of this text, the tool chain consists of the following;

• Assembler

• Linker

• Loader

• Debugger

While there are many options for the tool chain, this text uses a fairly standard set of
open source tools that work well together and fully support the x86 64-bit environment.

Each of these programming tools is explained in the following sections.

 5.1 Assemble/Link/Load Overview
In broad terms, the assemble, link, and load process is how programmer written source
files are converted into an executable program.

The human readable source file is converted into an object file by the assembler. In the
most basic form, the object file is converted into an executable file by the linker. The
loader will load the executable file into memory.

23 For more information, refer to: http://en.wikipedia.org/wiki/Toolchain

Page 41

Chapter
5

There are two ways to write error-free
programs; only the third works.

Chapter 5.0 ◄ Tool Chain

An overview of the process is provided in the following diagram.

The assemble, link, and load steps are described in more detail in the following sections.

Page 42

Illustration 6: Overview: Assemble, Link, Load

Assembly
Language

Source
File

ASSEMBLE

List
File

Object
File

LINK

LOAD
Executable

File

 RAM

Other
Object
Files

(if any)

Library
Routines
(if any)

Shared
Object
Files

(if any)

Chapter 5.0 ◄ Tool Chain

 5.2 Assembler
The assembler24 is a program that will read an assembly language input file and convert
the code into a machine language binary file. The input file is an assembly language
source file containing assembly language instructions in human readable form. The
machine language output is referred to as an object file. As part of this process, the
comments are removed, and the variable names and labels are converted into
appropriate addresses (as required by the CPU during execution).

The assembler used in this text is the yasm25 assembler. Links to the yasm web site and
documentation can be found in Chapter 1, Introduction

 5.2.1 Assemble Commands
The appropriate yasm assembler command for reading the assembly language source
file, such as the example from the previous chapter, is as follows:

yasm -g dwarf2 -f elf64 example.asm -l example.lst

Note, the -l is a dash lower-case letter L (which is easily confused with the number 1).

The -g dwarf226 option is used to inform the assembler to include debugging
information in the final object file. This increases the size of the object file, but is
necessary to allow effective debugging. The -f elf64 informs the assembler to create the
object file in the ELF6427 format which is appropriate for 64-bit, Linux-based systems.
The example.asm is the name of the assembly language source file for input. The -l
example.lst (dash lower-case letter L) informs the assembler to create a list file named
example.lst.

If an error occurs during the assembly process, it must be resolved before continuing to
the link step.

 5.2.2 List File
In addition, the assembler is optionally capable of creating a list file. The list file shows
the line number, the relative address, the machine language version of the instruction
(including variable references), and the original source line. The list file can be useful
when debugging.

24 For more information, refer to: http://en.wikipedia.org/wiki/Assembler_(computing)#Assembler
25 For more information, refer to: https://en.wikipedia.org/wiki/Yasm
26 For more information, refer to: https://en.wikipedia.org/wiki/DWARF
27 For more information, refer to: http://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Page 43

Chapter 5.0 ◄ Tool Chain

For example, a fragment from the list file data section, from the example program in the
previous chapter is as follows:
 36 00000009 40660301 dVar1 dd 17000000
 37 0000000D 40548900 dVar2 dd 9000000
 38 00000011 00000000 dResult dd 0

On the first line, the 36 is the line number. The next number, 0x00000009, is the
relative address in the data area of where that variable will be stored. Since dVar1 is a
double-word, which requires four bytes, the address for the next variable is
0x0000000D. The dVar1 variable uses 4 bytes as addresses 0x00000009, 0x0000000A,
0x0000000B, and 0x0000000C. The rest of the line is the data declaration as typed in
the original assembly language source file.

The 0x40660301 is the value, in hex, as placed in memory. The 17,000,00010 is
0x01036640. Recalling that the architecture is little-endian, the least significant byte
(0x40) is placed in the lowest memory address. As such, the 0x40 is placed in relative
address 0x00000009, the next byte, 0x66, is placed in address 0x0000000A and so forth.
This can be confusing as at first glance the number may appear backwards or garbled
(depending on how it is viewed).

To help visualize, the memory picture would be as follows:

Page 44

variable
name

value address

00 0x00000010
89 0x0000000F
54 0x0000000E

dVar2 → 40 0x0000000D
01 0x0000000C
03 0x0000000B
66 0x0000000A

dVar1 → 40 0x00000009

Illustration 7: Little-Endian, Multiple Variable Data Layout

Chapter 5.0 ◄ Tool Chain

For example, a fragment of the list file text section, excerpted from the example
program in the previous chapter is as follows:
 95 last:
 96 0000005A 48C7C03C000000 mov rax, SYS_exit
 97 00000061 48C7C300000000 mov rdi, EXIT_SUCCESS
 98 00000068 0F05 syscall

Again, the numbers to the left are the line numbers. The next number, 0x0000005A, is
the relative address of where the line of code will be placed.

The next number, 0x48C7C03C000000, is the machine language version of the
instruction, in hex, that the CPU reads and understands. The rest of the line is the
original assembly language source instruction.

The label, last:, does not have a machine language instruction since the label is used to
reference a specific address and is not an executable instruction.

 5.2.3 Two-Pass Assembler
The assembler28 will read the source file and convert each assembly language
instruction, typed by the programmer, into a set of 1's and 0's that the CPU knows to be
that instruction. The 1's and 0's are referred to as machine language. There is a one-to-
one correspondence between the assembly language instructions and the binary machine
language. This relationship means that machine language, in the form of an executable
file can be converted back into human readable assembly language. Of course, the
comments, variable names, and label names are missing, so the resulting code can be
very difficult to read.

As the assembler reads each line of assembly language, it generates machine code for
that instruction. This will work well for instructions that do not perform jumps.
However, for instructions that might change the control flow (e.g., IF statements,
unconditional jumps), the assembler is not able to convert the instruction. For example,
given the following code fragment:

mov rax, 0
jmp skipRest
...
...

skipRest:

28 For more information, refer to: http://en.wikipedia.org/wiki/Assembly_language#Assembler

Page 45

Chapter 5.0 ◄ Tool Chain

This is referred to as a forward reference. If the assembler reads the assembly file one
line at a time, it has not read the line where skipRest is defined. In fact, it does not even
know for sure if skipRest is defined at all.

This situation can be resolved by reading the assembly source file twice. The entire
process is referred to as a two-pass assembler. The steps required for each pass are
detailed in the following sections.

 5.2.3.1 First Pass

The steps taken on the first pass vary based on the design of the specific assembler.
However, some of the basic operations performed on the first pass include the
following:

• Create symbol table

• Expand macros

• Evaluate constant expressions

A macro is a program element that is expanded into a set of programmer predefined
instructions. For more information, refer to Chapter 11, Macros.

A constant expression is an expression composed entirely of constants. Since the
expression is constants only, it can be fully evaluated at assemble-time. For example,
assuming the constant BUFF is defined, the following instruction contains a constant
expression;

mov rax, BUFF+5
This type of constant expression is used commonly in large or complex programs.

Addresses are assigned to all statements in the program. The symbol table is a listing or
table of all the program symbols, variable names and program labels, and their
respective addresses in the program.

As appropriate, some assembler directives are processed in the first pass.

 5.2.3.2 Second Pass

The steps taken on the second pass vary based on the design of the specific assembler.
However, some of the basic operations performed on the second pass include the
following:

• Final generation of code

• Creation of list file (if requested)

Page 46

Chapter 5.0 ◄ Tool Chain

• Create object file

The term code generation refers to the conversion of the programmer provided assembly
language instruction into the CPU executable machine language instruction. Due to the
one-to-one correspondence, this can be done for instructions that do not use symbols on
either the first or second pass.

It should be noted that, based on the assembler design, much of the code generation
might be done on the first pass or all done on the second pass. Either way, the final
generation is performed on the second pass. This will require using the symbol table to
check program symbols and obtain the appropriate addresses from the table.

The list file, while optional, can be useful for debugging. If requested, it would be
generated on the second pass.

If there are no errors, the final object file is created on the second pass.

 5.2.4 Assembler Directives
Assembler directives are instructions to the assembler that direct the assembler to do
something. This might be formatting or layout. These directives are not translated into
instructions for the CPU.

 5.3 Linker
The linker29, sometimes referred to as linkage editor, will combine one or more object
files into a single executable file. Additionally, any routines from user or system
libraries are included as necessary. The GNU gold linker, ld30, is used. The appropriate
linker command for the example program from the previous chapter is as follows:

ld -g -o example example.o
Note, the -o is a dash lower-case letter O, which can be confused with the number 0.

The -g option is used to inform the linker to include debugging information in the final
executable file. This increases the size of the executable file, but is necessary to allow
effective debugging. The -o example specifies to create the executable file named
example (with no extension). If the -o <fileName> option is omitted, the output file is
named a.out (by default). The example.o is the name of the input object file read by the
linker. It should be noted that the executable file could be named anything and does not
need to have the same name as any of the input object files.

29 For more information, refer to: http://en.wikipedia.org/wiki/Linker_(computing)
30 For more information, refer to: http://en.wikipedia.org/wiki/Gold_(linker)

Page 47

Chapter 5.0 ◄ Tool Chain

 5.3.1 Linking Multiple Files
In programming, large problems are typically solved by breaking them into smaller
problems. The smaller problems can be addressed individually, possibly by different
programmers.

Additional input object files, if any, would be listed, in order, separated with a space.
For example, if there are two object files, main.o and funcs.o the link command to create
an executable file name example, with debugging information included, would be as
follows:

ld -g -o example main.o funcs.o

This would typically be required for larger or more complex programs.

When using functions located in a different, external source file, any function or
functions not in the current source file must be declared as extern. Variables, such as
global variables, in other source files can be accessed by using the extern statement as
well, however data is typically transferred as arguments of the function call.

 5.3.2 Linking Process
Linking is the fundamental process of combining the smaller solutions into a single
executable unit. If any user or system library routines are used, the linker will include
the appropriate routines. The object files and library routines are combined into a single
executable module. The machine language code is copied from each object file into a
single executable.

As part of combining the object files, the linker must adjust the relocatable addresses as
necessary. Assuming there are two source files, the main and a secondary source file
containing some functions, both of which have been assembled into object files main.o
and funcs.o. When each file is assembled, the calls to routines outside the file being
assembled are declared with the external assembler directive. The code is not available
for an external reference and such references are marked as external in the object file.
The list file will show an R for such relocatable addresses. The linker must satisfy the
external references. Additionally, the final location of the external references must be
placed in the code.

For example, if the main.o object file calls a function in the funcs.o file, the linker must
update the call with the appropriate address as shown in the following illustration.

Page 48

Chapter 5.0 ◄ Tool Chain

Here, the function fnc1 is external to the main.o object file and is marked with an R.
The actual function fnc1 is in the funcs.o file, which starts its relative addressing from
0x0 (in the text section) since it does not know about the main code. When the object
files are combined, the original relative address of fnc1 (shown as 0x0100:) is changed
to its final address in executable file (shown as 0x0400:). The linker must insert this
final address into the call statement in the main (shown as call 0x0400:) in order to
complete the linking process and ensure the function call will work correctly.

This will occur with all relocatable addresses for both code and data.

 5.3.3 Dynamic Linking
The Linux operating system supports dynamic linking31, which allows for postponing
the resolution of some symbols until a program is being executed.

31 For more information, refer to: http://en.wikipedia.org/wiki/Dynamic_linker

Page 49

Illustration 8: Linking Multiple Files

main.o

...
call fnc1

…

funcs.o

...
fnc1:
0x0100:

…

executable

call 0x0400

...
0x0400:

…

Chapter 5.0 ◄ Tool Chain

The actual instructions are not placed in executable file and instead, if needed, resolved
and accessed at run-time.

While more complex, this approach offers two advantages:

• Often-used libraries (e.g., the standard system libraries) can be stored in only one
location, not duplicated in every single binary.

• If a bug in a library function is corrected, all programs using it dynamically will
benefit from the correction (at the next execution). Otherwise, programs that
utilize this function by static linking would have to be re-linked before the
correction is applied.

There are also disadvantages:

• An incompatible updated library will break executable’s that depended on the
behavior of the previous version of the library.

• A program, together with the libraries it uses, might be certified (e.g. as to
correctness, documentation requirements, or performance) as a package, but not
if components can be replaced.

In Linux/Unix, the dynamically linked object files typically a have .so (shared object)
extension. In Windows, it is a .dll (dynamically linked library) extension. Further
details of dynamic linking are outside the scope of this text.

 5.4 Assemble/Link Script
When programming, it is often necessary to type the assemble and link commands many
times with various different programs. Instead of typing the assemble (yasm) and link
(ld) commands each time, it is possible to place them in a file, called a script file. Then,
the script file can be executed which will just execute the commands that were entered
in the file. While not required, using a script file can save time and make things easier
when working on a program.

A simple example bash32 assemble/link script is as follows:
#!/bin/bash
Simple assemble/link script.
if [-z $1]; then
echo "Usage: ./asm64 <asmMainFile> (no extension)"
exit

32 For more information, refer to: http://en.wikipedia.org/wiki/Bash_(Unix_shell)

Page 50

Chapter 5.0 ◄ Tool Chain

fi
Verify no extensions were entered
if [! -e "$1.asm"]; then
echo "Error, $1.asm not found."
echo "Note, do not enter file extensions."
exit

fi
Compile, assemble, and link.
yasm -Worphan-labels -g dwarf2 -f elf64 $1.asm -l $1.lst
ld -g -o $1 $1.o

The above script should be placed in a file. For this example, the file will be named
asm64 and placed in the current working directory (where the source files are located).

Once created, execute privilege will need to be added to the script file as follows:
chmod +x asm64

This will only need to be done once for each script file.

The script file will read the source file name from the command line. For example, to
use the script file to assemble the example from the previous chapter (named
example.asm), type the following:

./asm64 example

The ".asm" extension on the example.asm file should not be included (since it is added
in the script). The script file will assemble and link the source file, creating the list file,
object file, and executable file.

Use of this, or any script file, is optional. The name of the script file can be changed as
desired.

 5.5 Loader
The loader33 is a part of the operating system that will load the program from secondary
storage into primary storage (i.e., main memory). In broad terms, the loader will
attempt to find, and if found, read a properly formatted executable file, create a new

33 For more information, refer to: http://en.wikipedia.org/wiki/Loader_(computing)

Page 51

Chapter 5.0 ◄ Tool Chain

process, and load the code into memory and mark the program as ready for execution.
The operating system scheduler will make the decisions about which process is executed
and when the process is executed.

The loader is implicitly invoked by typing the program name. For example, on the
previous example program, named example, the Linux command would be:

./example

which will execute the file named example created via the previous steps (assemble and
link). Since the example program does not perform any output, nothing will be
displayed to the console. As such, a debugger can be used to check the results.

 5.6 Debugger
The debugger34 is used to control execution of a program. This allows for testing and
debugging activities to be performed.

In the previous example, the program computed a series of calculations, but did not
output any of the results. The debugger can be used to check the results. The
executable file is created with the assemble and link command previously described and
must include the -g option.

The debugger used is the GNU DDD debugger which provides a visual front-end for the
GNU command line debugger, gdb. The DDD web site and documentation are noted in
the references section of Chapter 1, Introduction.

Due to the complexity and importance of the debugger, a separate chapter for the
debugging is provided.

 5.7 Exercises
Below are some questions based on this chapter.

 5.7.1 Quiz Questions
Below are some quiz questions.

1) What is the relationship between assembly language and machine language?

2) What actions are performed on the first pass of the assembler?

3) What actions are performed on the second pass of the assembler?

34 For more information, refer to: http://en.wikipedia.org/wiki/Debugger

Page 52

Chapter 5.0 ◄ Tool Chain

4) What actions are performed by the linker?

5) What actions are performed by the loader?

6) Provide an example of a constant expression.

7) Draw a diagram of the entire assemble, link, and load process.

8) When is a shared object file linked with a program?

9) What is contained in the symbol table (two things)?

Page 53

Chapter 5.0 ◄ Tool Chain

Page 54

 6.0 DDD Debugger
A debugger allows the user to control execution of a program, examine variables, other
memory (i.e., stack space), and display program output (if any). The open source GNU
Data Display Debugger (DDD35) is a visual front-end to the GNU Debugger (GDB36)
and is widely available. Other debuggers can easily be used if desired.

Only the basic debugger commands are addressed in this chapter. The DDD debugger
has many more features and options not covered here. As you gain experience, it would
be worth reviewing the DDD documentation, referenced in Chapter 1, to learn more
about additional features in order to help improve overall debugging efficiency.

DDD functionality can be extended using various plug-ins. The plug-ins are not
required and will not be addressed in this Chapter.

This chapter addresses using the GNU DDD debugger as a tool. The logical process of
how to debug a program is not addressed in this chapter.

 6.1 Starting DDD
The ddd debugger is started with the executable file. The program must be assembled
and linked with the correct options (as noted in the previous chapter). For example,
using the previous sample program, example, the command would be:

ddd example

Upon starting DDD/GDB, something similar to the screen, shown below, should be
displayed (with the appropriate source code displayed).

35 For more information, refer to: http://en.wikipedia.org/wiki/Data_Display_Debugger
36 For more information, refer to: http://en.wikipedia.org/wiki/GNU_Debugger

Page 55

Chapter
6

My software never has bugs. It just
develops random features.

Chapter 6.0 ◄ DDD Debugger

Illustration 9: Initial Debugger Screen

If the code is not displayed in a similar manner as shown above, the assemble and link
steps should be verified. Specifically, the -g qualifier must be included in both the
assemble and link steps.

Built in help is available by clicking on the Help menu item (upper right-hand corner).
The DDD and GDB manuals are available from the virtual library link on the class web
page. To exit DDD/GDB, select File → Exit (from the top menu bar).

Page 56

Chapter 6.0 ◄ DDD Debugger

 6.1.1 DDD Configuration Settings
Some additional DDD/GDB configuration settings suggestions include:

Edit → Preferences → General → Suppress X Warning

Edit → Preferences → Source → Display Source Line Numbers

These are not required, but can make using the debugger easier. If set, the options will
be saved and remembered for successive uses of the debugger (on the same machine).

 6.2 Program Execution with DDD
To execute the program, click on the Run button from the command tool menu (shown
below). Alternately, you can type run at the (gdb) prompt (bottom GDB console
window). However, this will execute the program entirely and, when done, the results
will be reset (and lost).

 6.2.1 Setting Breakpoints
In order to control program execution, it will be necessary to set a breakpoint (execution
pause location) to pause the program at a user selected location. This can be done by
selecting the source location (line to stop at). For this example, we will stop at line 95.

The breakpoint can be done one of three ways:

• Right click on the line number and select: Set Breakpoint

• In the GDB Command Console, at the (gdb) prompt, type: break last

• In the GDB Command Console, at the (gdb) prompt, type: break 95

In the following example, line 94 is a label with no instruction. If a breakpoint is set on
label, it will stop at the next executable instruction (line 95 in this example).

Page 57

Chapter 6.0 ◄ DDD Debugger

When set correctly, the “stop” icon will appear to the left of line number (as shown in
the diagram).

Illustration 10: Debugger Screen with Breakpoint Set

DDD/GDB commands can be typed inside the bottom window (at the (gdb) prompt) at
any time. Multiple breakpoints can be set if desired.

 6.2.2 Executing Programs
Once the debugger is started, in order to effectively use the debugger, an initial
breakpoint must be set.

Page 58

Chapter 6.0 ◄ DDD Debugger

Once the breakpoint is set, the run command can be performed via clicking Run menu
window or typing run at the (gdb) prompt. The program will execute up to, but not
including the statement with the green arrow.

Illustration 11: Debugger Screen with Green Arrow

The breakpoint is indicated with the stop sign on the left and the current location is
indicated with a green arrow (see example above). Specifically, the green arrow points
to the next instruction to be executed. That is, the statement pointed to by the green
arrow has not yet been executed.

Page 59

Chapter 6.0 ◄ DDD Debugger

 6.2.2.1 Run / Continue

As needed, additional breakpoints can be set. However, click the Run command will
re-start execution from the beginning and stop at the initial breakpoint.

After the initial Run command, to continue to the next breakpoint, the continue
command must be used (by clicking Cont menu window or typing cont at the (gdb)
prompt). Single lines can also be executed one line at a time by typing the step or next
commands (via clicking Step or Next menu window or typing step or next at the (gdb)
prompt).

 6.2.2.2 Next / Step

The next command will execute to the next instruction. This includes executing an
entire function if necessary. The step command will execute one step, stepping into
functions if necessary. For a single, non-function instruction, there is no difference
between the next and step commands.

 6.2.3 Displaying Register Contents
The simplest method to see the contents of the registers is to use the registers window.
The registers window is not displayed by default, but can be viewed by selecting Status
→ Registers (from the top menu bar). When displayed, the register window will show
register contents by register name (left column), in both hex (middle column) and
unsigned decimal (right column). Since the right column will display the unsigned

Page 60

Illustration 12: DDD Command Bar

Chapter 6.0 ◄ DDD Debugger

value of the entire register it can be confusing when the data is signed (as it will be
displayed as unsigned). Additionally, for some registers, such as rbp and rsp, both
columns are shown in hex (since they are typically used for addresses). The examine
memory command will, as described in the following section, allow more specific
control over what format (e.g., signed, unsigned, hex) in which to display values.

Illustration 13: Register Window

Depending on the machine and screen resolution, the register window may need to be
resized to view the entire contents.

The third column of the register window generally shows the decimal quadword
representation except for some special purpose registers (rbp and rsp). The signed
quadword decimal representation may not always be meaningful. For example, if
unsigned data is being used (such as addresses), the signed representation would be
incorrect. Additionally, when character data is used, the signed representation would
not be meaningful.

By default, only the integer registers are displayed. Clicking on the “All registers” box
will add the floating-point registers to the display. Viewing will require scrolling down
within the register window.

Page 61

Chapter 6.0 ◄ DDD Debugger

 6.2.4 DDD/GDB Commands Summary
The following table provides a small subset of the most common DDD commands.
When typed, most commands may be abbreviated. For example, quit can be
abbreviated as q. The command and the abbreviation are shown in the table.

Command Description

quit | q Quit the debugger.

break <label/addr>

 | b <label/addr>

Set a break point (stop point) at <label> or
<address>.

run <args> | r <args> Execute the program (to the first breakpoint).

continue | c Continue execution (to the next breakpoint).

continue <n> | c <n> Continue execution (to the next breakpoint),
skipping n-1 crossing of the breakpoint. This is
can be used to quickly get to the nth iteration of
a loop.

step | s Step into next instruction (i.e., steps into
function/procedure calls).

next | n Next instruction (steps through
function/procedure calls).

F3 Re-start program (and stop at first breakpoint).

where Current activation (call depth).

x/<n><f><u> $rsp Examine contents of the stack.

Page 62

Chapter 6.0 ◄ DDD Debugger

Command Description

x/<n><f><u> &<variable> Examine memory location <variable>
<n> number of locations to display, 1 is
default.

<f> format: d – decimal (signed)

x – hex

u – decimal (unsigned)

c – character

s – string

f – floating-point

<u> unit size: b – byte (8-bits)

h – halfword (16-bits)

w – word (32-bits)

g – giant (64-bits)

source <filename> Read commands from file <filename>.

set logging file <filename> Set logging file to <filename>, default is
gdb.txt.

set logging on Turn logging (to a file) on.

set logging off Turn logging (to a file) off.

set logging overwrite When logging (to a file) is turned on, overwrite
previous log file (if any).

More information can be obtained via the built-in help facility or from the
documentation on the ddd website (referenced from Chapter 1).

Page 63

Chapter 6.0 ◄ DDD Debugger

 6.2.4.1 DDD/GDB Commands, Examples

For example, given the below data declarations:
bnum1 db 5
wnum2 dw -2000
dnum3 dd 100000
qnum dq 1234567890
class db "Assembly", 0
twopi dd 6.28

Assuming signed data, the commands to examine memory commands would be as
follows:

x/db &bnum1
x/dh &wnum2
x/dw &dnum3
x/dg &qnum
x/s &class
x/f &twopi

If an inappropriate memory dump command is used (i.e., incorrect size), there is no
error message and the debugger will display what was requested (even if it does not
make sense). Examining variables will require use of the appropriate memory dump
command based on the data declarations. Additional options can be accessed across the
menu at the top of the screen.

To display an array in DDD, the basic examine memory command is used.
x/<n><f><u> &<variable>

For example, assuming the declaration of:
list1 dd 100001, -100002, 100003, 100004, 100005

The examine memory commands would be as follows:
x/5dw &list1

Where the 5 is the array length. The d indicates signed data (u would have been
unsigned data). The w indicates 32-bit sized data (which is what the dd, define double,
definition declares in the source file). The &list1 refers to the address of the variable.
Note, the address points to the first element (and only the first element). As such, it is
possible to display less or more elements that are actually declared in the array.

Page 64

Chapter 6.0 ◄ DDD Debugger

The basic examine memory command can be used with a memory address directly (as
opposed to a variable name). For example:

x/dw 0x600d44

Addresses are typically displayed in hexadecimal, so a 0x would be required in order to
enter the hexadecimal address directly as shown.

 6.2.5 Displaying Stack Contents
There are some occasions when displaying the contents of the stack may be useful. The
stack is normally comprised of 64-bit, unsigned elements. The examine memory
command is used, however the address is in the rsp register (not a variable name). The
examine memory command to display the current top of the stack would be as follows:

x/ug $rsp
The examine memory command to display the top 6 items on the stack would be as
follows:

x/6ug $rsp
Due to the stack implementation, the first item shown will always be current top of the
stack.

 6.2.6 Interactive Debugger Commands File
Since the data display command(s) must be entered correctly, it can be tedious.
Additionally, typically there is no error message if the command is incorrect which can
be confusing. To help reduce errors, the correct execution and display command can be
stored in a text file. The debugger can then read the commands from the file (instead of
typing them by hand). While the results are typically displayed to the screen, the results
can be redirected to an output file. This can be useful for easy review.

For example, some typical debugger commands to set the breakpoint, run the program,
display some variables, and redirect the output to a log file might be as follows:

#------------------------------------
Debugger Input Script
#------------------------------------
echo \n\n
break last
run
set pagination off

Page 65

Chapter 6.0 ◄ DDD Debugger

set logging file out.txt
set logging overwrite
set logging on
set prompt
echo ------------------------------------ \n
echo display variables \n
echo \n
x/100dw &list
x/dw &length
echo \n
x/dw &listMin
x/dw &listMid
x/dw &listMax
x/dw &listSum
x/dw &listAve
echo \n \n
set logging off
quit

Note 1; this example assumes a label 'last' is defined in the source program (as is
done on the example program).

Note 2; this example exits the debugger. If that is not desired, the 'quit' command
can be removed. When exiting from the input file, the debugger may request user
confirmation of the exit (yes or no).

These commands should be placed in a file (such as gdbIn.txt), so they can be read from
within the debugger.

 6.2.6.1 Debugger Commands File (non-interactive)

The debugger command to read a file is ''source <filename>''. For example, if the
command file is named gdbIn.txt,

(gdb) source gdbIn.txt

Based on the above commands, the output will be placed in the file out.txt. The output
file name can be changed as desired.

Each program will require a custom set of input command based on the specific
variables and associated sizes in that program. The debugger input commands file will
only be useful when the program is fairly close to working. Program crashes and other
more significant errors will require interactive debugging to determine the specific error
or errors.

Page 66

Chapter 6.0 ◄ DDD Debugger

 6.2.6.2 Non-interactive Debugger Commands File

It is possible to obtain the output file directly without an interactive DDD session. The
following command, entered at the command line, will execute the command in the
input file on the given program, create the output file, and exit the program.

gbd prog <gdbIn.txt

Which will create the output file (as specified in the gdbIn.txt input file) and exit the
debugger. Once the input file is created, this is the fastest option for obtaining the final
output file for a working program. Again, this would only be useful if the program is
working or very close to working correctly.

 6.3 Exercises
Below are some quiz questions based on this chapter.

 6.3.1 Quiz Questions
Below are some quiz questions.

1) How is the debugger started (from the command line)?

2) What option is required during the assemble and link step in order to ensure the
program be easily debugged.

3) What does the run command do specifically?

4) What does the continue command do specifically?

5) How is the register window displayed?

6) There are three columns in the register window. The first shows the register.
What do the other two columns show?

7) Once the debugger is started, how can the user exit?

8) Describe how a breakpoint is set (multiple ways).

9) What is the debugger command to read debugger commands from a file?

10) When the DDD shows a green arrow pointing to an instruction, what does that
mean?

11) Provide the debugger command to display each of the following variables in
decimal.

1. bVar1 (byte sized variable)

Page 67

Chapter 6.0 ◄ DDD Debugger

2. wVar1 (word sized variable)

3. dVar1 (double-word sized variable)

4. qVar1 (quadword sized variable)

5. bArr1 (30 element array of bytes)

6. wArr1 (50 element array of words)

7. dArr1 (75 element array of double-words)

12) Provide the debugger command to display each of the following variables in
hexadecimal format.

1. bVar1 (byte sized variable)

2. wVar1 (word sized variable)

3. dVar1 (double-word sized variable)

4. qVar1 (quadword sized variable)

5. bArr1 (30 element array of bytes)

6. wArr1 (50 element array of words)

7. dArr1 (75 element array of double-words)

13) What is the debugger command to display the value at the current top of the
stack?

14) What is the debugger command to display five (5) values at the current top of the
stack?

 6.3.2 Suggested Projects
Below are some suggested projects based on this chapter.

1) Type in the example program from Chapter 4, Program Format. Assemble and
link the program as described in Chapter 5, Tool Chain. Execute the debugger as
noted in this chapter. Set a breakpoint at the label last and execute the program
(to that breakpoint). Interactively verify that the calculations performed resulted
in the correct values. This will require typing the appropriate debugger examine
memory commands (based on the variable size).

2) After completing the previous problem, create a debugger input file that will set
the send the output to a text file, set a breakpoint, execute the program, and
display the results for each variable (based on the appropriate variable size).

Page 68

Chapter 6.0 ◄ DDD Debugger

Execute the debugger and read the source file. Review the input file worked
correctly and that the program calculations are correct based on the results
shown in the output file.

3) Create an assemble and link script file, as described in Chapter 5, Tool Chain.
Use the script to assemble and link the program. Ensure that the script correctly
assembles and links.

Page 69

Chapter 6.0 ◄ DDD Debugger

Page 70

 7.0 Instruction Set Overview
This chapter provides a basic overview for a simple subset of the x86-64 instruction set
focusing on the integer operations. This will cover only the subset of instructions
required for the topics and programs discussed within the scope of this text. This will
exclude some of the more advanced instructions and restricted mode instructions. For a
complete listing of all processor instructions, refer to the references listed in Chapter 1.

The instructions are presented in the following order:

• Data Movement

• Conversion Instructions

• Arithmetic Instructions

• Logical Instructions

• Control Instructions

The instructions for function calls are discussed in the chapter in Chapter 12, Functions.

A complete listing of the instructions covered in this text is located in Appendix B for
reference.

 7.1 Notational Conventions
This section summarizes the notation used within this text which is fairly common in the
technical literature. In general, an instruction will consist of the instruction or operation
itself (i.e., add, sub, mul, etc.) and the operands. The operands refer to where the data
(to be operated on) is coming from and/or where the result is to be placed.

Page 71

Chapter
7

Why are math books sad?
Because they have so many problems.

Chapter 7.0 ◄ Instruction Set Overview

 7.1.1 Operand Notation
The following table summarizes the notational conventions used in the remainder of the
document.

Operand Notation Description
<reg> Register operand. The operand must be a register.

<reg8>, <reg16>,
<reg32>, <reg64>

Register operand with specific size requirement. For
example, reg8 means a byte sized register (e.g., al, bl,
etc.) only and reg32 means a double-word sized register
(e.g., eax, ebx, etc.) only.

<dest> Destination operand. The operand may be a register or
memory. Since it is a destination operand, the contents
will be overwritten with the new result (based on the
specific instruction).

<RXdest> Floating-point destination register operand. The operand
must be a floating-point register. Since it is a destination
operand, the contents will be overwritten with the new
result (based on the specific instruction).

<src> Source operand. Operand value is unchanged after the
instruction.

<imm> Immediate value. May be specified in decimal, hex, octal,
or binary.

<mem> Memory location. May be a variable name or an indirect
reference (i.e., a memory address).

<op> or <operand> Operand, register or memory.
<op8>, <op16>,
<op32>, <op64>

Operand, register or memory, with specific size
requirement. For example, op8 means a byte sized
operand only and reg32 means a double-word sized
operand only.

<label> Program label.

By default, the immediate values are decimal or base-10. Hexadecimal or base-16
immediate values may be used but must be preceded with a 0x to indicate the value is
hex. For example, 1510 could be entered in hex as 0x0F.

Page 72

Chapter 7.0 ◄ Instruction Set Overview

Refer to Chapter 8, Addressing Modes for more information regarding memory
locations and indirection.

 7.2 Data Movement
Typically, data must be moved into a CPU register from RAM in order to be operated
upon. Once the calculations are completed, the result may be copied from the register
and placed into a variable. There are a number of simple formulas in the example
program that perform these steps. This basic data movement operation is performed
with the move instruction.

The general form of the move instruction is:
mov <dest>, <src>

The source operand is copied from the source operand into the destination operand. The
value of the source operand is unchanged. The destination and source operand must be
of the same size (both bytes, both words, etc.). The destination operand cannot be an
immediate. Both operands cannot be memory. If a memory to memory operation is
required, two instructions must be used.

When the destination register operand is of double-word size and the source operand is
of double-word size, the upper-order double-word of the quadword register is set to
zero. This only applies when the destination operand is a double-word sized integer
register.

Specifically, if the following operations are performed,
mov eax, 100 ; eax = 0x00000064
mov rcx, -1 ; rcx = 0xffffffffffffffff
mov ecx, eax ; ecx = 0x00000064

Initially, the rcx register is set to -1 (which is all 0xF's). When the positive number
from the eax register (10010) is moved into the rcx register, the upper-order portion of

Page 73

mov eax, dword [myVariable]

what where how much memory
to do to place to get location

Illustration 14: MOV Instruction Overview

Chapter 7.0 ◄ Instruction Set Overview

the quadword register rcx is set to 0 over-writing the 1's from the previous instruction.

The move instruction is summarized as follows:

Instruction Explanation
 mov <dest>, <src> Copy source operand to the destination

operand.
Note 1, both operands cannot be memory.
Note 2, destination operands cannot be an
immediate.
Note 3, for double-word destination and source
operand, the upper-order portion of the
quadword register is set to 0.

Examples: mov ax, 42
 mov cl, byte [bvar]
 mov dword [dVar], eax
 mov qword [qVar], rdx

A more complete list of the instructions is located in Appendix B.

For example, assuming the following data declarations:
dValue dd 0
bNum db 42
wNum dw 5000
dNum dd 73000
qNum dq 73000000
bAns db 0
wAns dw 0
dAns dd 0
qAns dq 0

To perform, the basic operations of:
dValue = 27
bAns = bNum
wAns = wNum
dAns = dNum
qAns = qNum

Page 74

Chapter 7.0 ◄ Instruction Set Overview

The following instructions could be used:
mov dword [dValue], 27 ; dValue = 27
mov al, byte [bNum]
mov byte [bAns], al ; bAns = bNum
mov ax, word [wNum]
mov word [wAns], ax ; wAns = wNum
mov eax, dword [dNum]
mov dword [dAns], eax ; dAns = dNum
mov rax, qword [qNum]
mov qword [qAns], rax ; qAns = qNum

For some instructions, including those above, the explicit type specification (e.g., byte,
word, dword, qword) can be omitted as the other operand will clearly define the size. In
the text it will be included for consistency and good programming practice.

 7.3 Addresses and Values
The only way to access memory is with the brackets ([]'s). Omitting the brackets will
not access memory and instead obtain the address of the item. For example:

mov rax, qword [var1] ; value of var1 in rax
mov rax, var1 ; address of var1 in rax

Since omitting the brackets is not an error, the assembler will not generate error
messages or warnings. This can lead to confusion.

In addition, the address of a variable can be obtained with the load effective address, or
lea, instruction. The load effective address instruction is summarized as follows:

Instruction Explanation
 lea <reg64>, <mem> Place address of <mem> into reg64.

Examples: lea rcx, byte [bvar]
 lea rsi, dword [dVar]

A more complete list of the instructions is located in Appendix B.

Page 75

Chapter 7.0 ◄ Instruction Set Overview

Additional information and extensive examples are presented in Chapter 8, Addressing
Modes.

 7.4 Conversion Instructions
It is sometimes necessary to convert from one size to another size. For example, a byte
might need to be converted to a double-word for some calculations in a formula. The
process used for conversions depends on the size and type of the operand. The
following sections summarize how conversions are performed.

 7.4.1 Narrowing Conversions
Narrowing conversions are converting from a larger type to a smaller type (i.e., word to
byte or double-word to word).

No special instructions are needed for narrowing conversions. The lower portion of the
memory location or register may be accessed directly. For example, if the value of 50
(0x32) is placed in the rax register, the al register may be accessed directly to obtain the
value as follows:

mov rax, 50
mov byte [bVal], al

This example is reasonable since the value of 50 will fit in a byte value. However, if the
value of 500 (0x1f4) is placed in the rax register, the al register can still be accessed.

mov rax, 500
mov byte [bVal], al

In this example, the bVal variable will contain 0xf4 which may lead to incorrect results.
The programmer is responsible for ensuring that narrowing conversions are performed
appropriately. Unlike a compiler, no warnings or error messages will be generated.

 7.4.2 Widening Conversions
Widening conversions are from a smaller type to a larger type (e.g., byte to word or
word to double-word). Since the size is being expanded, the upper-order bits must be
set based on the sign of the original value. As such, the data type, signed or unsigned,
must be known and the appropriate process or instructions must be used.

Page 76

Chapter 7.0 ◄ Instruction Set Overview

 7.4.2.1 Unsigned Conversions

For unsigned widening conversions, the upper part of the memory location or register
must be set to zero. Since an unsigned value can only be positive, the upper-order bits
can only be zero. For example, to convert the byte value of 50 in the al register, to a
quadword value in rbx, the following operations can be performed.

mov al, 50
mov rbx, 0
mov bl, al

Since the rbx register was set to 0 and then the lower 8-bits were set to the value from al
(50 in this example), the entire 64-bit rbx register is now 50.

This general process can be performed on memory or other registers. It is the
programmer's responsibility to ensure that the values are appropriate for the data sizes
being used.

An unsigned conversion from a smaller size to a larger size can also be performed with a
special move instruction, as follows:

 movzx <dest>, <src>

Which will fill the upper-order bits with zero. The movzx instruction does not allow a
quadword destination operand with a double-word source operand. As previously
noted, a mov instruction with a double-word register destination operand with a double-
word source operand will zero the upper-order double-word of the quadword destination
register.

A summary of the instructions that perform the unsigned widening conversion are as
follows:

Instruction Explanation
 movzx <dest>, <src>

 movzx <reg16>, <op8>
 movzx <reg32>, <op8>
 movzx <reg32>, <op16>
 movzx <reg64>, <op8>
 movzx <reg64>, <op16>

Unsigned widening conversion.
Note 1, both operands cannot be memory.
Note 2, destination operands cannot be an
immediate.
Note 3, immediate values not allowed.

Examples: movzx cx, byte [bVar]
 movzx dx, al
 movzx ebx, word [wVar]

Page 77

Chapter 7.0 ◄ Instruction Set Overview

 movzx ebx, cx
 movzx rbx, cl
 movzx rbx, cx

A more complete list of the instructions is located in Appendix B.

 7.4.2.2 Signed Conversions

For signed widening conversions, the upper-order bits must be set to either 0's or 1's
depending on if the original value was positive or negative.

This is performed by a sign-extend operation. Specifically, the upper-order bit of the
original value indicates if the value is positive (with a 0) or negative (with a 1). The
upper-order bit of the original value is extended into the higher bits of the new, widened
value.

For example, given that the ax register is set to -7 (0xfff9), the bits would be set as
follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1

Since the value is negative, the upper-order bit (bit 15) is a 1. To convert the word value
in the ax register into a double-word value in the eax register, the upper-order bit (1 in
this example) is extended or copied into the entire upper-order word (bits 31-16)
resulting in the following:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1

There are a series of dedicated instructions used to convert signed values in the A
register from a smaller size into a larger size. These instructions work only on the A
register, sometimes using the D register for the result. For example, the cwd instruction
will convert a signed value in the ax register into a double-word value in the dx (upper-
order portion) and ax (lower-order portion) registers. This is typically by convention
written as dx:ax. The cwde instruction will convert a signed value in the ax register
into a double-word value in the eax register.

Page 78

Chapter 7.0 ◄ Instruction Set Overview

A more generalized signed conversion from a smaller size to a larger size can also be
performed with some special move instructions, as follows:

movsx <dest>, <src>
movsxd <dest>, <src>

Which will perform the sign extension operation on the source argument. The movsx
instruction is the general form and the movsxd instruction is used to allow a quadword
destination operand with a double-word source operand.

A summary of the instructions that perform the signed widening conversion are as
follows:

Instruction Explanation
 cbw Convert byte in al into word in ax.

Note, only works for al to ax register.

Examples: cbw

 cwd Convert word in ax into double-word in dx:ax.
Note, only works for ax to dx:ax registers.

Examples: cwd

 cwde Convert word in ax into double-word in eax.
Note, only works for ax to eax register.

Examples: cwde

 cdq Convert double-word in eax into quadword in
edx:eax.
Note, only works for eax to edx:eax registers.

Examples: cdq

 cdqe Convert double-word in eax into quadword in
rax.
Note, only works for rax register.

Examples: cdqe

Page 79

Chapter 7.0 ◄ Instruction Set Overview

Instruction Explanation
 cqo Convert quadword in rax into word in double-

quadword in rdx:rax.
Note, only works for rax to rdx:rax registers.

Examples: cqo

 movsx <dest>, <src>

 movsx <reg16>, <op8>
 movsx <reg32>, <op8>
 movsx <reg32>, <op16>
 movsx <reg64>, <op8>
 movsx <reg64>, <op16>
 movsxd <reg64>, <op32>

Signed widening conversion (via sign
extension).
Note 1, both operands cannot be memory.
Note 2, destination operands cannot be an
immediate.
Note 3, immediate values not allowed.
Note 4, special instruction (movsxd) required
for 32-bit to 64-bit signed extension.

Examples: movsx cx, byte [bVar]
 movsx dx, al
 movsx ebx, word [wVar]
 movsx ebx, cx
 movsxd rbx, dword [dVar]

A more complete list of the instructions is located in Appendix B.

 7.5 Integer Arithmetic Instructions
The integer arithmetic instructions perform arithmetic operations such as addition,
subtraction, multiplication, and division on integer values. The following sections
present the basic integer arithmetic operations.

 7.5.1 Addition
The general form of the integer addition instruction is as follows:

add <dest>, <src>

Where operation performs the following:
<dest> = <dest> + <src>

Specifically, the source and destination operands are added and the result is placed in

Page 80

Chapter 7.0 ◄ Instruction Set Overview

the destination operand (over-writing the previous contents). The value of the source
operand is unchanged. The destination and source operand must be of the same size
(both bytes, both words, etc.). The destination operand cannot be an immediate. Both
operands, cannot be memory. If a memory to memory addition operation is required,
two instructions must be used.

For example, assuming the following data declarations:
bNum1 db 42
bNum2 db 73
bAns db 0
wNum1 dw 4321
wNum2 dw 1234
wAns dw 0
dNum1 dd 42000
dNum2 dd 73000
dAns dd 0
qNum1 dq 42000000
qNum2 dq 73000000
qAns dq 0

To perform the basic operations of:
bAns = bNum1 + bNum2
wAns = wNum1 + wNum2
dAns = dNum1 + dNum2
qAns = qNum1 + qNum2

The following instructions could be used:
; bAns = bNum1 + bNum2
mov al, byte [bNum1]
add al, byte [bNum2]
mov byte [bAns], al
; wAns = wNum1 + wNum2
mov ax, word [wNum1]
add ax, word [wNum2]
mov word [wAns], ax
; dAns = dNum1 + dNum2
mov eax, dword [dNum1]

Page 81

Chapter 7.0 ◄ Instruction Set Overview

add eax, dword [dNum2]
mov dword [dAns], eax
; qAns = qNum1 + qNum2
mov rax, qword [qNum1]
add rax, qword [qNum2]
mov qword [qAns], rax

For some instructions, including those above, the explicit type specification (e.g., byte,
word, dword, qword) can be omitted as the other operand will clearly define the size. It
is included for consistency and good programming practice.

In addition to the basic add instruction, there is an increment instruction that will add
one to the specified operand. The general form of the increment instruction is as
follows:

inc <operand>

Where operation is as follows:
<operand> = <operand> + 1

The result is exactly the same as using the add instruction (and adding one). When
using a memory operand, the explicit type specification (e.g., byte, word, dword, qword)
is required to clearly define the size.

For example, assuming the following data declarations:
bNum db 42
wNum dw 4321
dNum dd 42000
qNum dq 42000000

To perform, the basic operations of:
rax = rax + 1
bNum = bNum + 1
wNum = wNum + 1
dNum = dNum + 1
qNum = qNum + 1

The following instructions could be used:
inc rax ; rax = rax + 1
inc byte [bNum] ; bNum = bNum + 1

Page 82

Chapter 7.0 ◄ Instruction Set Overview

inc word [wNum] ; wNum = wNum + 1
inc dword [dNum] ; dNum = dNum + 1
inc qword [qNum] ; qNum = qNum + 1

The addition instruction operates the same on signed and unsigned data. It is the
programmer's responsibility to ensure that the data types and sizes are appropriate for
the operations being performed.

The integer addition instructions are summarized as follows:

Instruction Explanation
 add <dest>, <src> Add two operands, (<dest> + <src>) and place

the result in <dest> (over-writing previous
value).
Note 1, both operands cannot be memory.
Note 2, destination operand cannot be an
immediate.

Examples: add cx, word [wVvar]
 add rax, 42
 add dword [dVar], eax
 add qword [qVar], 300

 inc <operand> Increment <operand> by 1.
Note, <operand> cannot be an immediate.

Examples: inc word [wVvar]
 inc rax
 inc dword [dVar]
 inc qword [qVar]

A more complete list of the instructions is located in Appendix B.

 7.5.1.1 Addition with Carry

The add with carry is a special add instruction that will include a carry from a previous
addition operation. This is useful when adding very large numbers, specifically
numbers larger than the register size of the machine.

Page 83

Chapter 7.0 ◄ Instruction Set Overview

Using a carry in addition is fairly standard. For example, consider the following
operation.

 17
+ 25

 42

As you may recall, the least significant digits (7 and 5) are added first. The result of 12
is noted as a 2 with a 1 carry. The most significant digits (1 and 2) are added along with
the previous carry (1 in this example) resulting in a 4.

As such, two addition operations are required. Since there is no carry possible with the
least significant portion, a regular addition instruction is used. The second addition
operation would need to include a possible carry from the previous operation and must
be done with an add with carry instruction. Additionally, the add with carry must
immediately follow the initial addition operation to ensure that the rFlag register is not
altered by an unrelated instruction (thus possibly altering the carry bit).

For assembly language programs the Least Significant Quadword (LSQ) is added with
the add instruction and then immediately the Most Significant Quadword (MSQ) is
added with the adc which will add the quadwords and include a carry from the previous
addition operation.

The general form of the integer add with carry instruction is as follows:
adc <dest>, <src>

Where operation performs the following:
<dest> = <dest> + <src> + <carryBit>

Specifically, the source and destination operands along with the carry bit are added and
the result is placed in the destination operand (over-writing the previous value). The
carry bit is part of the rFlag register. The value of the source operand is unchanged.
The destination and source operand must be of the same size (both bytes, both words,
etc.). The destination operand cannot be an immediate. Both operands, cannot be
memory. If a memory to memory addition operation is required, two instructions must
be used.

For example, given the following declarations;
dquad1 ddq 0x1A000000000000000

Page 84

Chapter 7.0 ◄ Instruction Set Overview

dquad2 ddq 0x2C000000000000000
dqSum ddq 0

Each of the variables dquad1, dquad2, and dqSum are 128-bits and thus will exceed the
machine 64-bit register size. However, two 64-bit registers can be used for each of the
128-bit values. This requires two move instructions, one for each 64-bit register. For
example,

mov rax, qword [dquad1]
mov rdx, qword [dquad1+8]

The first move to the rax register accesses the first 64-bits of the 128-bit variable. The
second move to the rdx register access the next 64-bits of the 128-bit variable. This is
accomplished by using the variable starting address, dquad1 and adding 8 bytes, thus
skipping the first 64-bits (or 8 bytes) and accessing the next 64-bits.

If the LSQ's are added and then the MSQ's are added including any carry, the 128-bit
result can be correctly obtained. For example,

mov rax, qword [dquad1]
mov rdx, qword [dquad1+8]
add rax, qword [dquad2]
adc rdx, qword [dquad2+8]
mov qword [dqSum], rax
mov qword [dqSum+8], rdx

Initially, the LSQ of dquad1 is placed in rax and the MSQ is placed in rdx. Then the
add instruction will add the 64-bit rax with the LSQ of dquad2 and, in this example,
provide a carry of 1 with the result in rax. Then the rdx is added with the MSQ of
dquad2 along with the carry via the adc instruction and the result placed in rdx.

The integer add with carry instruction is summarized as follows:

Page 85

Chapter 7.0 ◄ Instruction Set Overview

Instruction Explanation
 adc <dest>, <src> Add two operands, (<dest> + <src>) and any

previous carry (stored in the carry bit in the
rFlag register) and place the result in <dest>
(over-writing previous value).
Note 1, both operands cannot be memory.
Note 2, destination operand cannot be an
immediate.

Examples: adc rcx, qword [dVvar1]
 adc rax, 42

A more complete list of the instructions is located in Appendix B.

 7.5.2 Subtraction
The general form of the integer subtraction instruction is as follows:

sub <dest>, <src>

Where operation performs the following:
<dest> = <dest> - <src>

Specifically, the source operand is subtracted from the destination operand and the result
is placed in the destination operand (over-writing the previous value). The value of the
source operand is unchanged. The destination and source operand must be of the same
size (both bytes, both words, etc.). The destination operand cannot be an immediate.
Both operands, cannot be memory. If a memory to memory subtraction operation is
required, two instructions must be used.

For example, assuming the following data declarations:
bNum1 db 73
bNum2 db 42
bAns db 0
wNum1 dw 1234
wNum2 dw 4321
wAns dw 0
dNum1 dd 73000
dNum2 dd 42000

Page 86

Chapter 7.0 ◄ Instruction Set Overview

dAns dd 0
qNum1 dq 73000000
qNum2 dq 73000000
qAns dd 0

To perform, the basic operations of:
bAns = bNum1 - bNum2
wAns = wNum1 - wNum2
dAns = dNum1 - dNum2
qAns = qNum1 - qNum2

The following instructions could be used:
; bAns = bNum1 - bNum2
mov al, byte [bNum1]
sub al, byte [bNum2]
mov byte [bAns], al
; wAns = wNum1 – wNum2
mov ax, word [wNum1]
sub ax, word [wNum2]
mov word [wAns], ax
; dAns = dNum1 – dNum2
mov eax, dword [dNum1]
sub eax, dword [dNum2]
mov dword [dAns], eax
; qAns = qNum1 - qNum2
mov rax, qword [qNum1]
sub rax, qword [qNum2]
mov qword [qAns], rax

For some instructions, including those above, the explicit type specification (e.g., byte,
word, dword, qword) can be omitted as the other operand will clearly define the size. It
is included for consistency and good programming practices.

In addition to the basic subtract instruction, there is a decrement instruction that will
subtract one from the specified operand. The general form of the decrement instruction
is as follows:

dec <operand>

Page 87

Chapter 7.0 ◄ Instruction Set Overview

Where operation performs the following:
<operand> = <operand> - 1

The result is exactly the same as using the subtract instruction (and subtracting one).
When using a memory operand, the explicit type specification (e.g., byte, word, dword,
qword) is required to clearly define the size.

For example, assuming the following data declarations:
bNum db 42
wNum dw 4321
dNum dd 42000
qNum dq 42000000

To perform, the basic operations of:
rax = rax - 1
bNum = bNum - 1
wNum = wNum - 1
dNum = dNum - 1
qNum = qNum - 1

The following instructions could be used:
dec rax ; rax = rax - 1
dec byte [bNum] ; bNum = bNum - 1
dec word [wNum] ; wNum = wNum - 1
dec dword [dNum] ; dNum = dNum - 1
dec qword [qNum] ; qNum = qNum - 1

The subtraction instructions operate the same on signed and unsigned data. It is the
programmer's responsibility to ensure that the data types and sizes are appropriate for
the operations being performed.

The integer subtraction instructions are summarized as follows:

Instruction Explanation
 sub <dest>, <src> Subtract two operands, (<dest> - <src>) and

place the result in <dest> (over-writing
previous value).
Note 1, both operands cannot be memory.
Note 2, destination operand cannot be an
immediate.

Page 88

Chapter 7.0 ◄ Instruction Set Overview

Instruction Explanation

Examples: sub cx, word [wVvar]
 sub rax, 42
 sub dword [dVar], eax
 sub qword [qVar], 300

 dec <operand> Decrement <operand> by 1.
Note, <operand> cannot be an immediate.

Examples: dec word [wVvar]
 dec rax
 dec dword [dVar]
 dec qword [qVar]

A more complete list of the instructions is located in Appendix B.

 7.5.3 Integer Multiplication
The multiply instruction multiplies two integer operands. Mathematically, there are
special rules for handling multiplication of signed values. As such, different instructions
are used for unsigned multiplication (mul) and signed multiplication (imul).

Multiplication typically produces double sized results. That is, multiplying two n-bit
values produces a 2n-bit result. Multiplying two 8-bit numbers will produce a 16-bit
result. Similarly, multiplication of two 16-bit numbers will produce a 32-bit result,
multiplication of two 32-bit numbers will produce a 64-bit result, and multiplication of
two 64-bit numbers will produce a 128-bit result.

There are many variants for the multiply instruction. For the signed multiply, some
forms will truncate the result to the size of the original operands. It is the programmer's
responsibility to ensure that the values used will work for the specific instructions
selected.

 7.5.3.1 Unsigned Multiplication

The general form of the unsigned multiplication is as follows:
mul <src>

Where the source operand must be a register or memory location. An immediate
operand is not allowed.

For the single operand multiply instruction, the A register (al/ax/eax/rax) must be used

Page 89

Chapter 7.0 ◄ Instruction Set Overview

for one of the operands (al for 8-bits, ax for 16-bits, eax for 32-bits, and rax for 64-bit).
The other operand can be a memory location or register, but not an immediate.
Additionally, the result will be placed in the A and possibly D registers, based on the
sizes being multiplied. The following table shows the various options for the byte,
word, double-word, and quadword unsigned multiplications.

As shown in the chart, for most cases the integer multiply uses a combination of the A
and D registers. This can be very confusing.

For example, when multiplying a rax (64-bits) times a quadword operand (64-bits), the
multiplication instruction provides a double quadword result (128-bit). This can be
useful and important when dealing with very large numbers. Since the 64-bit
architecture only has 64-bit registers, the 128-bit result is, and must be, placed in two
different quadword (64-bit) registers, rdx for the upper-order result and rax for the
lower-order result, which is typically written as rdx:rax (by convention).

Page 90

Bytes Words Double-words

al ax eax

x op8 x op16 x op32

ah al dx ax edx eax

Quadwords

rax

x op64

rdx rax

Illustration 15: Integer Multiplication Overview

Chapter 7.0 ◄ Instruction Set Overview

However, this use of two registers is applied to smaller sizes as well. For example, the
result of multiplying ax (16-bits) times a word operand (also 16-bits) provides a double-
word (32-bit) result. However, the result is not placed in eax (which might be easier), it
is placed in two registers, dx for the upper-order result (16-bits) and ax for the lower-
order result (16-bits), typically written as dx:ax (by convention). Since the double-word
(32-bit) result is in two different registers, two moves may be required to save the result.

This pairing of registers, even when not required, is due to legacy support for previous
earlier versions of the architecture. While this helps ensure backwards compatibility, it
can be quite confusing.

For example, assuming the following data declarations:
bNumA db 42
bNumB db 73
wAns dw 0
wAns1 dw 0
wNumA dw 4321
wNumB dw 1234
dAns2 dd 0
dNumA dd 42000
dNumB dd 73000
qAns3 dq 0
qNumA dq 420000
qNumB dq 730000
dqAns4 ddq 0

To perform, the basic operations of:
wAns = bNumA^2 ; bNumA squared
bAns1 = bNumA * bNumB
wAns1 = bNumA * bNumB
wAns2 = wNumA * wNumB
dAns2 = wNumA * wNumB
dAns3 = dNumA * dNumB
qAns3 = dNumA * dNumB
qAns4 = qNumA * qNumB
dqAns4 = qNumA * qNumB

Page 91

Chapter 7.0 ◄ Instruction Set Overview

The following instructions could be used:
; wAns = bNumA^2 or bNumA squared
mov al, byte [bNumA]
mul al ; result in ax
mov word [wAns], ax

; wAns1 = bNumA * bNumB
mov al, byte [bNumA]
mul byte [bNumB] ; result in ax
mov word [wAns1], ax
; dAns2 = wNumA * wNumB
mov ax, word [wNumA]
mul word [wNumB] ; result in dx:ax
mov word [dAns2], ax
mov word [dAns2+2], dx
; qAns3 = dNumA * dNumB
mov eax, dword [dNumA]
mul dword [dNumB] ; result in edx:eax
mov dword [qAns3], eax
mov dword [qAns3+4], edx
; dqAns4 = qNumA * qNumB
mov rax, qword [qNumA]
mul qword [qNumB] ; result in rdx:rax
mov qword [dqAns4], rax
mov qword [dqAns4+8], rdx

For some instructions, including those above, the explicit type specification (e.g., byte,
word, dword, qword) is required to clearly define the size.

The integer unsigned multiplication instruction is summarized as follows:

Page 92

Chapter 7.0 ◄ Instruction Set Overview

Instruction Explanation
 mul <src>
 mul <op8>
 mul <op16>
 mul <op32>
 mul <op64>

Multiply A register (al, ax, eax, or rax) times
the <src> operand.

Byte: ax = al * <src>
Word: dx:ax = ax * <src>
Double: edx:eax = eax * <src>
Quad: rdx:rax = rax * <src>

Note, <src> operand cannot be an immediate.

Examples: mul word [wVvar]
 mul al
 mul dword [dVar]
 mul qword [qVar]

A more complete list of the instructions is located in Appendix B.

 7.5.3.2 Signed Multiplication

The signed multiplication allows a wider range of operands and operand sizes. The
general forms of the signed multiplication are as follows:

imul <source>
imul <dest>, <src/imm>
imul <dest>, <src>, <imm>

In all cases, the destination operand must be a register. For the multiple operand
multiply instruction, byte operands are not supported.

When using a single operand multiply instruction, the imul is the same layout as the
mul (as previously presented). However, the operands are interpreted only as signed.

When two operands are used, the destination operand and the source operand are
multiplied and the result placed in the destination operand (over-writing the previous
value).

Specifically, the action performed is:
<dest> = <dest> * <src/imm>

For two operands, the <src/imm> operand may be a register, memory location, or
immediate value. The size of the immediate value is limited to the size of the source
operand, up to a double-word size (32-bit), even for quadword (64-bit) multiplications.
The final result is truncated to the size of the destination operand. A byte sized
destination operand is not supported.

Page 93

Chapter 7.0 ◄ Instruction Set Overview

When three operands are used, two operands are multiplied and the result placed in the
destination operand. Specifically, the action performed is:

<dest> = <src> * <imm>

For three operands, the <src> operand must be a register or memory location, but not an
immediate. The <imm> operand must be an immediate value. The size of the
immediate value is limited to the size of the source operand, up to a double-word size
(32-bit), even for quadword multiplications. The final result is truncated to the size of
the destination operand. A byte sized destination operand is not supported.

It should be noted that when the multiply instruction provides a larger type, the original
type may be used. For this to work, the values multiplied must fit into the smaller size
which limits the range of the data. For example, when two double-words are multiplied
and a quadword result is provided, the least significant double-word (of the quadword)
will contain the answer if the values are sufficiently small which is often the case. This
is typically done in high-level languages when an int (32-bit integer) variable is
multiplied by another int variable and assigned to an int variable.

For example, assuming the following data declarations:
wNumA dw 1200
wNumB dw -2000
wAns1 dw 0
wAns2 dw 0
dNumA dd 42000
dNumB dd -13000
dAns1 dd 0
dAns2 dd 0
qNumA dq 120000
qNumB dq -230000
qAns1 dq 0
qAns2 dq 0

To perform, the basic operations of:
wAns1 = wNumA * -13
wAns2 = wNumA * wNumB
dAns1 = dNumA * 113
dAns2 = dNumA * dNumB

Page 94

Chapter 7.0 ◄ Instruction Set Overview

qAns1 = qNumA * 7096
qAns2 = qNumA * qNumB

The following instructions could be used:
; wAns1 = wNumA * -13
mov ax, word [wNumA]
imul ax, -13 ; result in ax
mov word [wAns1], ax
; wAns2 = wNumA * wNumB
mov ax, word [wNumA]
imul ax, word [wNumB] ; result in ax
mov word [wAns2], ax
; dAns1 = dNumA * 113
mov eax, dword [dNumA]
imul eax, 113 ; result in eax
mov dword [dAns1], eax
; dAns2 = dNumA * dNumB
mov eax, dword [dNumA]
imul eax, dword [dNumB] ; result in eax
mov dword [dAns2], eax
; qAns1 = qNumA * 7096
mov rax, qword [qNumA]
imul rax, 7096 ; result in rax
mov qword [qAns1], rax
; qAns2 = qNumA * qNumB
mov rax, qword [qNumA]
imul rax, qword [qNumB] ; result in rax
mov qword [qAns2], rax

Another way to perform the multiplication of
qAns1 = qNumA * 7096

Would be as follows:
; qAns1 = qNumA * 7096
mov rcx, qword [qNumA]

Page 95

Chapter 7.0 ◄ Instruction Set Overview

imul rbx, rcx, 7096 ; result in rbx
mov qword [qAns1], rbx

This example shows the three-operand multiply instruction using different registers.

In these examples, the multiplication result is truncated to the size of the destination
operand. For a full-sized result, the single operand instruction should be used (as fully
described in the section regarding unsigned multiplication).

For some instructions, including those above, the explicit type specification (e.g., byte,
word, dword, qword) may not be required to clearly define the size.

The integer signed multiplication instruction is summarized as follows:

Instruction Explanation
 imul <src>
 imul <dest>, <src/imm32>
 imul <dest>, <src>, <imm32>
 imul <op8>
 imul <op16>
 imul <op32>
 imul <op64>
 imul <reg16>, <op16/imm>
 imul <reg32>, <op32/imm>
 imul <reg64>, <op64/imm>
 imul <reg16>, <op16>, <imm>
 imul <reg32>, <op32>, <imm>
 imul <reg64>, <op64>, <imm>

Signed multiply instruction.

For single operand:
Byte: ax = al * <src>
Word: dx:ax = ax * <src>
Double: edx:eax = eax * <src>
Quad: rdx:rax = rax * <src>

Note, <src> operand cannot be an immediate.
For two operands:

<reg16> = <reg16> * <op16/imm>
<reg32> = <reg32> * <op32/imm>
<reg64> = <reg64> * <op64/imm>

For three operands:
<reg16> = <op16> * <imm>
<reg32> = <op32> * <imm>
<reg64> = <op64> * <imm>

Examples: imul ax, 17
 imul al
 imul ebx, dword [dVar]
 imul rbx, dword [dVar], 791
 imul rcx, qword [qVar]
 imul qword [qVar]

A more complete list of the instructions is located in Appendix B.

Page 96

Chapter 7.0 ◄ Instruction Set Overview

 7.5.4 Integer Division
The division instruction divides two integer operands. Mathematically, there are special
rules for handling division of signed values. As such, different instructions are used for
unsigned division (div) and signed division (idiv).

Recall that
dividend
divisor

= quotient

Division requires that the dividend must be a larger size than the divisor. In order to
divide by an 8-bit divisor, the dividend must be 16-bits (i.e., the larger size). Similarly,
a 16-bit divisor requires a 32-bit dividend. And, a 32-bit divisor requires a 64-bit
dividend.

Like the multiplication, for most cases the integer division uses a combination of the A
and D registers. This pairing of registers is due to legacy support for previous earlier
versions of the architecture. While this helps ensure backwards compatibility, it can be
quite confusing.

Further, the A, and possibly the D register, must be used in combination for the
dividend.

• Byte Divide: ax for 16-bits
• Word Divide: dx:ax for 32-bits
• Double-word divide: edx:eax for 64-bits
• Quadword Divide: rdx:rax for 128-bits

Setting the dividend (top operand) correctly is a key source of problems. For the word,
double-word, and quadword division operations, the dividend requires both the D
register (for the upper-order portion) and A (for the lower-order portion).

Setting these correctly depends on the data type. If a previous multiplication was
performed, the D and A registers may already be set correctly. Otherwise, a data item
may need to be converted from its current size to a larger size with the upper-order
portion being placed in the D register. For unsigned data, the upper portion will always
be zero. For signed data, the existing data must be sign extended as noted in a previous
section, Signed Conversions.

The divisor can be a memory location or register, but not an immediate. Additionally,
the result will be placed in the A register (al/ax/eax/rax) and the remainder in either the
ah, dx, edx, or rdx register. Refer to the Integer Division Overview table to see the
layout more clearly.

Page 97

Chapter 7.0 ◄ Instruction Set Overview

The use of a larger size operand for the dividend matches the single operand
multiplication. For simple divisions, an appropriate conversion may be required in order
to ensure the dividend is set correctly. For unsigned divisions, the upper-order part of
the dividend can set to zero. For signed divisions, the upper-order part of the dividend
can be set with an applicable conversion instruction.

As always, division by zero will crash the program and damage the space-time
continuum. So, try not to divide by zero.

Page 98

Chapter 7.0 ◄ Instruction Set Overview

The following tables provide an overview of the divide instruction for bytes, words,
double-words, and quadwords.

Page 99

Bytes Words

ah al dx ax

= al = ax

op8 op16

rem ah rem dx

Double-words

edx eax

= eax

op32

rem edx

Quadwords

rdx rax

op64

= rax

rem rdx

Illustration 16: Integer Division Overview

Chapter 7.0 ◄ Instruction Set Overview

The signed and unsigned division instructions operate in the same manner. However,
the range of values that can be divided is different. The programmer is responsible for
ensuring that the values being divided are appropriate for the operand sizes being used.

The general forms of unsigned and signed division are as follows:
div <src> ; unsigned division
idiv <src> ; signed division

The source operand and destination operands (A and D registers) are described in the
preceding table.

For example, assuming the following data declarations:
bNumA db 63
bNumB db 17
bNumC db 5
bAns1 db 0
bAns2 db 0
bRem2 db 0
bAns3 db 0
wNumA dw 4321
wNumB dw 1234
wNumC dw 167
wAns1 dw 0
wAns2 dw 0
wRem2 dw 0
wAns3 dw 0
dNumA dd 42000
dNumB dd -3157
dNumC dd -293
dAns1 dd 0
dAns2 dd 0
dRem2 dd 0
dAns3 dd 0
qNumA dq 730000
qNumB dq -13456
qNumC dq -1279
qAns1 dq 0
qAns2 dq 0
qRem2 dq 0
qAns3 dq 0

Page 100

Chapter 7.0 ◄ Instruction Set Overview

To perform, the basic operations of:
bAns1 = bNumA / 3 ; unsigned
bAns2 = bNumA / bNumB ; unsigned
bRem2 = bNumA % bNumB ; % is modulus
bAns3 = (bNumA * bNumC) / bNumB ; unsigned
wAns1 = wNumA / 5 ; unsigned
wAns2 = wNumA / wNumB ; unsigned
wRem2 = wNumA % wNumB ; % is modulus
wAns3 = (wNumA * wNumC) / wNumB ; unsigned
dAns = dNumA / 7 ; signed
dAns3 = dNumA * dNumB ; signed
dRem1 = dNumA % dNumB ; % is modulus
dAns3 = (dNumA * dNumC) / dNumB ; signed
qAns = qNumA / 9 ; signed
qAns4 = qNumA * qNumB ; signed
qRem1 = qNumA % qNumB ; % is modulus
qAns3 = (qNumA * qNumC) / qNumB ; signed

The following instructions could be used:
; -----
; example byte operations, unsigned
; bAns1 = bNumA / 3 (unsigned)
mov al, byte [bNumA]
mov ah, 0
mov bl, 3
div bl ; al = ax / 3
mov byte [bAns1], al
; bAns2 = bNumA / bNumB (unsigned)
mov ax, 0
mov al, byte [bNumA]
div byte [bNumB] ; al = ax / bNumB
mov byte [bAns2], al
mov byte [bRem2], ah ; ah = ax % bNumB
; bAns3 = (bNumA * bNumC) / bNumB (unsigned)
mov al, byte [bNumA]
mul byte [bNumC] ; result in ax

Page 101

Chapter 7.0 ◄ Instruction Set Overview

div byte [bNumB] ; al = ax / bNumB
mov byte [bAns3], al
; -----
; example word operations, unsigned
; wAns1 = wNumA / 5 (unsigned)
mov ax, word [wNumA]
mov dx, 0
mov bx, 5
div bx ; ax = dx:ax / 5
mov word [wAns1], ax
; wAns2 = wNumA / wNumB (unsigned)
mov dx, 0
mov ax, word [wNumA]
div word [wNumB] ; ax = dx:ax / wNumB
mov word [wAns2], ax
mov word [wRem2], dx
; wAns3 = (wNumA * wNumC) / wNumB (unsigned)
mov ax, word [wNumA]
mul word [wNumC] ; result in dx:ax
div word [wNumB] ; ax = dx:ax / wNumB
mov word [wAns3], ax
; -----
; example double-word operations, signed
; dAns1 = dNumA / 7 (signed)
mov eax, dword [dNumA]
cdq ; eax → edx:eax
mov ebx, 7
idiv ebx ; eax = edx:eax / 7
mov dword [dAns1], eax
; dAns2 = dNumA / dNumB (signed)
mov eax, dword [dNumA]
cdq ; eax → edx:eax
idiv dword [dNumB] ; eax = edx:eax/dNumB
mov dword [dAns2], eax
mov dword [dRem2], edx ; edx = edx:eax%dNumB

Page 102

Chapter 7.0 ◄ Instruction Set Overview

; dAns3 = (dNumA * dNumC) / dNumB (signed)
mov eax, dword [dNumA]
imul dword [dNumC] ; result in edx:eax
idiv dword [dNumB] ; eax = edx:eax/dNumB
mov dword [dAns3], eax
; -----
; example quadword operations, signed
; qAns1 = qNumA / 9 (signed)
mov rax, qword [qNumA]
cqo ; rax → rdx:rax
mov rbx, 9
idiv rbx ; eax = edx:eax / 9
mov qword [qAns1], rax
; qAns2 = qNumA / qNumB (signed)
mov rax, qword [qNumA]
cqo ; rax → rdx:rax
idiv qword [qNumB] ; rax = rdx:rax/qNumB
mov qword [qAns2], rax
mov qword [qRem2], rdx ; rdx = rdx:rax%qNumB
; qAns3 = (qNumA * qNumC) / qNumB (signed)
mov rax, qword [qNumA]
imul qword [qNumC] ; result in rdx:rax
idiv qword [qNumB] ; rax = rdx:rax/qNumB
mov qword [qAns3], rax

For some instructions, including those above, the explicit type specification (e.g., byte,
word, dword, qword) is required to clearly define the size.

Page 103

Chapter 7.0 ◄ Instruction Set Overview

The integer division instructions are summarized as follows:

Instruction Explanation
 div <src>
 div <op8>
 div <op16>
 div <op32>
 div <op64>

Unsigned divide A/D register (ax, dx:ax,
edx:eax, or rdx:rax) by the <src> operand.

Byte: al = ax / <src>, rem in ah
Word: ax = dx:ax / <src>, rem in dx
Double: eax = eax / <src>, rem in edx
Quad: rax = rax / <src>, rem in rdx

Note, <src> operand cannot be an immediate.

Examples: div word [wVvar]
 div bl
 div dword [dVar]
 div qword [qVar]

 idiv <src>
 idiv <op8>
 idiv <op16>
 idiv <op32>
 idiv <op64>

Signed divide A/D register (ax, dx:ax,
edx:eax, or rdx:rax) by the <src> operand.

Byte: al = ax / <src>, rem in ah
Word: ax = dx:ax / <src>, rem in dx
Double: eax = eax / <src>, rem in edx
Quad: rax = rax / <src>, rem in rdx

Note, <src> operand cannot be an immediate.

Examples: idiv word [wVvar]
 idiv bl
 idiv dword [dVar]
 idiv qword [qVar]

A more complete list of the instructions is located in Appendix B.

 7.6 Logical Instructions
This section summarizes some of the more common logical instructions that may be
useful when programming.

Page 104

Chapter 7.0 ◄ Instruction Set Overview

 7.6.1 Logical Operations
As you should recall, below are the truth tables for the basic logical operations;

The logical instructions are summarized as follows:

Instruction Explanation
 and <dest>, <src> Perform logical AND operation on two

operands, (<dest> and <src>) and place the
result in <dest> (over-writing previous value).
Note 1, both operands cannot be memory.
Note 2, destination operand cannot be an
immediate.

Examples: and ax, bx
 and rcx, rdx
 and eax, dword [dNum]
 and qword [qNum], rdx

 or <dest>, <src> Perform logical OR operation on two operands,
(<dest> || <src>) and place the result in <dest>
(over-writing previous value).
Note 1, both operands cannot be memory.
Note 2, destination operand cannot be an
immediate.

Examples: or ax, bx
 or rcx, rdx
 or eax, dword [dNum]
 or qword [qNum], rdx

Page 105

0 1 0 1 0 1 0 1 0 1 0 1

and 0 0 1 1 or 0 0 1 1 xor 0 0 1 1

0 0 0 1 0 1 1 1 0 1 1 0

Illustration 17: Logical Operations

Chapter 7.0 ◄ Instruction Set Overview

Instruction Explanation
 xor <dest>, <src> Perform logical XOR operation on two

operands, (<dest> ^ <src>) and place the
result in <dest> (over-writing previous value).
Note 1, both operands cannot be memory.
Note 2, destination operand cannot be an
immediate.

Examples: xor ax, bx
 xor rcx, rdx
 xor eax, dword [dNum]
 xor qword [qNum], rdx

 not <op> Perform a logical not operation (one's
complement on the operand 1's→0's and
0's→1's).
Note, operand cannot be an immediate.

Examples: not bx
 not rdx
 not dword [dNum]
 not qword [qNum]

The & refers to the logical AND operation, the || refers to the logical OR operation, and
the ^ refers to the logical XOR operation as per C/C++ conventions. The ¬ refers to the
logical NOT operation.

A more complete list of the instructions is located in Appendix B.

 7.6.2 Shift Operations
The shift operation shifts bits within an operand, either left or right. Two typical
reasons for shifting bits include isolating a subset of the bits within an operand for some
specific purpose or possibly for performing multiplication or division by powers of two.
All bits are shifted one position. The bit that is shifted outside the operand is lost and a
0-bit added at the other side.

 7.6.2.1 Logical Shift

The logical shift is a bitwise operation that shifts all the bits of its source register by the
specified number of bits and places the result into the destination register. The bits can

Page 106

Chapter 7.0 ◄ Instruction Set Overview

be shifted left or right as needed. Every bit in the source operand is moved the specified
number of bit positions and the newly vacant bit positions are filled in with zeros.

The following diagram shows how the right and left shift operations work for byte sized
operands.

The logical shift treats the operand as a sequence of bits rather than as a number.

The shift instructions may be used to perform unsigned integer multiplication and
division operations for powers of 2. Powers of two would be 2, 4, 8, etc. up to the limit
of the operand size (32-bits for register operands).

In the examples below, 23 is divided by 2 by performing a shift right logical one bit.
The resulting 11 is shown in binary. Next, 13 is multiplied by 4 by performing a shift
left logical two bits. The resulting 52 is shown in binary.

Page 107

Shift Right Logical Shift Left Logical

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1

0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0

Illustration 18: Logical Shift Overview

Shift Right Logical
Unsigned Division

Shift Left Logical
Unsigned Multiplication

0 0 0 1 0 1 1 1 = 23 0 0 0 0 1 1 0 1 = 13

0 0 0 0 1 0 1 1 = 11 0 0 1 1 0 1 0 0 = 52

Illustration 19: Logical Shift Operations

Chapter 7.0 ◄ Instruction Set Overview

As can be seen in the examples, a 0 was entered in the newly vacated bit locations on
either the right or left (depending on the operation).

The logical shift instructions are summarized as follows:

Instruction Explanation
 shl <dest>, <imm>
 shl <dest>, cl Perform logical shift left operation on

destination operand. Zero fills from right (as
needed).
The <imm> or the value in cl register must be
between 1 and 64.
Note, destination operand cannot be an
immediate.

Examples: shl ax, 8
 shl rcx, 32
 shl eax, cl
 shl qword [qNum], cl

 shr <dest>, <imm>
 shr <dest>, cl Perform logical shift right operation on

destination operand. Zero fills from left (as
needed).
The <imm> or the value in cl register must be
between 1 and 64.
Note, destination operand cannot be an
immediate.

Examples: shr ax, 8
 shr rcx, 32
 shr eax, cl
 shr qword [qNum], cl

A more complete list of the instructions is located in Appendix B.

 7.6.2.2 Arithmetic Shift

The arithmetic shift right is also a bitwise operation that shifts all the bits of its source
register by the specified number of bits and places the result into the destination register.
Every bit in the source operand is moved the specified number of bit positions, and the
newly vacant bit positions are filled in. For an arithmetic left shift, the original leftmost
bit (the sign bit) is replicated to fill in all the vacant positions. This is referred to as sign
extension.

Page 108

Chapter 7.0 ◄ Instruction Set Overview

The following diagrams show how the shift left and shift right arithmetic operations
works for a byte sized operand.

The arithmetic left shift moves bits the number of specified places to the left and zero
fills the from the least significant bit position (left). The leading sign bit is not
preserved. The arithmetic left shift can be useful to perform an efficient multiplication
by a power of two. If the resulting value does not fit an overflow is generated.

The arithmetic right shift moves bits the number of specified places to the right and
treats the operand as a signed number which extends the sign (negative in this example).

Page 109

Shift Left Arithmetic

7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0 0

Illustration 20: Arithmetic Left Shift

Shift Right Arithmetic

7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 1

1 1 0 1 1 0 0 1

Illustration 21: Arithmetic Right Shift

Chapter 7.0 ◄ Instruction Set Overview

The arithmetic shift rounds always rounds down (towards negative infinity) and the
standard divide instruction truncates (rounds toward 0). As such, the arithmetic shift is
not typically used to replace the signed divide instruction.

The arithmetic shift instructions are summarized as follows:

Instruction Explanation
 sal <dest>, <imm>
 sal <dest>, cl Perform arithmetic shift left operation on

destination operand. Zero fills from right (as
needed).
The <imm> or the value in cl register must be
between 1 and 64.
Note, destination operand cannot be an
immediate.

Examples: sal ax, 8
 sal rcx, 32
 sal eax, cl
 sal qword [qNum], cl

 sar <dest>, <imm>
 sar <dest>, cl Perform arithmetic shift right operation on

destination operand. Sign fills from left (as
needed).
The <imm> or the value in cl register must be
between 1 and 64.
Note, destination operand cannot be an
immediate.

Examples: sar ax, 8
 sar rcx, 32
 sar eax, cl
 sar qword [qNum], cl

A more complete list of the instructions is located in Appendix B.

 7.6.3 Rotate Operations
The rotate operation shifts bits within an operand, either left or right, with the bit that is
shifted outside the operand is rotated around and placed at the other end.

For example, if a byte operand, 100101102, is rotated to the right 1 place, the result
would be 010010112. If a byte operand, 100101102, is rotated to the left 1 place, the
result would be 001011012.

Page 110

Chapter 7.0 ◄ Instruction Set Overview

The logical shift instructions are summarized as follows:

Instruction Explanation
 rol <dest>, <imm>
 rol <dest>, cl Perform rotate left operation on destination

operand.
The <imm> or the value in cl register must be
between 1 and 64.
Note, destination operand cannot be an
immediate.

Examples: rol ax, 8
 rol rcx, 32
 rol eax, cl
 rol qword [qNum], cl

 ror <dest>, <imm>
 ror <dest>, cl Perform rotate right operation on destination

operand.
The <imm> or the value in cl register must be
between 1 and 64.
Note, destination operand cannot be an
immediate.

Examples: ror ax, 8
 ror rcx, 32
 ror eax, cl
 ror qword [qNum], cl

A more complete list of the instructions is located in Appendix B.

 7.7 Control Instructions
Program control refers to basic programming structures such as IF statements and
looping.

All of the high-level language control structures must be performed with the limited
assembly language control structures. For example, an IF-THEN-ELSE statement does
not exist at the assembly language level. Assembly language provides an unconditional
branch (or jump) and a conditional branch or an IF statement that will jump to a target
label or not jump.

The control instructions refer to unconditional and conditional jumping. Jumping is
required for basic conditional statements (i.e., IF statements) and looping.

Page 111

Chapter 7.0 ◄ Instruction Set Overview

 7.7.1 Labels
A program label is the target, or a location to jump to, for control statements. For
example, the start of a loop might be marked with a label such as “loopStart”. The code
may be re-executed by jumping to the label.

Generally, a label starts with a letter, followed by letters, numbers, or symbols (limited
to “_”), terminated with a colon (“:”). It is possible to start labels with non-letter
characters (i.e., digits, “_”, “$”, “#”, “@”, “~” or “?”) . However, these typically
convey special meaning and, in general, should not be used by programmers. Labels in
yasm are case sensitive.

For example,
loopStart:
last:

are valid labels. Program labels may be defined only once.

The following sections describe how labels are used.

 7.7.2 Unconditional Control Instructions
The unconditional instruction provides an unconditional jump to a specific location in
the program denoted with a program label. The target label must be defined exactly
once and accessible and within scope from the originating jump instruction.

The unconditional jump instruction is summarized as follows:

Instruction Explanation
 jmp <label> Jump to specified label.

Note, label must be defined exactly once.

Examples: jmp startLoop
 jmp ifDone
 jmp last

A more complete list of the instructions is located in Appendix B.

 7.7.3 Conditional Control Instructions
The conditional control instructions provide a conditional jump based on a comparison.
This provides the functionality of a basic IF statement.

Page 112

Chapter 7.0 ◄ Instruction Set Overview

Two steps are required for a comparison; the compare instruction and the conditional
jump instruction. The conditional jump instruction will jump or not jump to the
provided label based on the result of the previous comparison operation. The compare
instruction will compare two operands and store the results of the comparison in the
rFlag registers. The conditional jump instruction will act (jump or not jump) based on
the contents of the rFlag register. This requires that the compare instruction is
immediately followed by the conditional jump instruction. If other instructions are
placed between the compare and conditional jump, the rFlag register will be altered and
the conditional jump may not reflect the correct condition.

The general form of the compare instruction is:
cmp <op1>, <op2>

Where <op1> and <op2> are not changed and must be of the same size. Either, but not
both, may be a memory operand. The <op1> operand cannot be an immediate, but the
<op2> operand may be an immediate value.

The conditional control instructions include the jump equal (je) and jump not equal
(jne) which work the same for both signed and unsigned data.

The signed conditional control instructions include the basic set of comparison
operations; jump less than (jl), jump less than or equal (jle), jump greater than (jg), and
jump greater than or equal (jge).

The unsigned conditional control instructions include the basic set of comparison
operations; jump below than (jb), jump below or equal (jbe), jump above than (ja), and
jump above or equal (jae).

The general form of the signed conditional instructions along with an explanatory
comment are as follows:

je <label> ; if <op1> == <op2>
jne <label> ; if <op1> != <op2>
jl <label> ; signed, if <op1> < <op2>
jle <label> ; signed, if <op1> <= <op2>
jg <label> ; signed, if <op1> > <op2>
jge <label> ; signed; if <op1> >= <op2>
jb <label> ; unsigned, if <op1> < <op2>
jbe <label> ; unsigned, if <op1> <= <op2>
ja <label> ; unsigned, if <op1> > <op2>
jae <label> ; unsigned, if <op1> >= <op2>

Page 113

Chapter 7.0 ◄ Instruction Set Overview

For example, given the following pseudo-code for signed data:
if (currNum > myMax)

myMax = currNum;

And, assuming the following data declarations:
currNum dq 0
myMax dq 0

Assuming that the values are updating appropriately within the program (not shown),
the following instructions could be used:

mov rax, qword [currNum]
cmp rax, qword [myMax] ; if currNum <= myMax
jle notNewMax ; skip set new max
mov qword [myMax], rax

 notNewMax:

Note that the logic for the IF statement has been reversed. The compare and conditional
jump provide functionality for jump or not jump. As such, if the condition from the
original IF statement is false, the code must not be executed. Thus, when false, in order
to skip the execution, the conditional jump will jump to the target label immediately
following the code to be skipped (not executed). While there is only one line in this
example, there can be many lines of code.

A more complex example might be as follows:
if (x != 0) {

ans = x / y;
errFlg = FALSE;

} else {
ans = 0;
errFlg = TRUE;

}

This basic compare and conditional jump do not provide a typical IF-ELSE structure. It
must be created. Assuming the x and y variables are signed double-words that will be
set during the program execution, and the following declarations:

TRUE equ 1
FALSE equ 0
x dd 0
y dd 0

Page 114

Chapter 7.0 ◄ Instruction Set Overview

ans dd 0
errFlg db FALSE

The following code could be used to implement the above IF-ELSE statement.
cmp dword [x], 0 ; if statement
je doElse
mov eax, dword [x]
cdq
idiv dword [y]
mov dword [ans], eax
mov byte [errFlg], FALSE
jmp skpElse

doElse:
mov dword [ans], 0
mov byte [errFlg], TRUE

skpElse:

In this example, since the data was signed, a signed division (idiv) and the appropriate
conversion (cdq in this case) were required. It should also be noted that the edx register
was overwritten even though it did not appear explicitly. If a value was previously
placed in edx (or rdx), it has been altered.

 7.7.3.1 Jump Out of Range

The target label is referred to as a short-jump. Specifically, that means the target label
must be within 128 bytes from the conditional jump instruction. While this limit is
not typically a problem, for very large loops, the assembler may generate an error
referring to “jump out-of-range”. The unconditional jump (jmp) is not limited in range.
If a “jump out-of-range” is generated, it can be eliminated by reversing the logic and
using an unconditional jump for the long jump. For example, the following code:

cmp rcx, 0
jne startOfLoop

might generate a “jump out-of-range” assembler error if the label, startOfLoop, is a long
distance away. The error can be eliminated with the following code:

cmp rcx, 0
je endOfLoop
jmp startOfLoop

endOfLoop:

Page 115

Chapter 7.0 ◄ Instruction Set Overview

Which accomplishes the same thing using an unconditional jump for the long jump and
adding a conditional jump to a very close label.

The conditional jump instructions are summarized as follows:

Instruction Explanation
 cmp <op1>, <op2> Compare <op1> with <op2>.

Results are stored in the rFlag register.
Note 1, operands are not changed.
Note 2, both operands cannot be memory.
Note 3, <op1> operand cannot be an
immediate.

Examples: cmp rax, 5
 cmp ecx, edx
 cmp ax, word [wNum]

 je <label> Based on preceding comparison instruction,
jump to <label> if <op1> == <op2>.
Label must be defined exactly once.

Examples: cmp rax, 5
 je wasEqual

 jne <label> Based on preceding comparison instruction,
jump to <label> if <op1> != <op2>.
Label must be defined exactly once.

Examples: cmp rax, 5
 jne wasNotEqual

 jl <label> For signed data, based on preceding
comparison instruction, jump to <label> if
<op1> < <op2>.
Label must be defined exactly once.

Examples: cmp rax, 5
 jl wasLess

 jle <label> For signed data, based on preceding
comparison instruction, jump to <label> if
<op1>  <op2>.
Label must be defined exactly once.

Page 116

Chapter 7.0 ◄ Instruction Set Overview

Instruction Explanation

Examples: cmp rax, 5
 jle wasLessOrEqual

 jg <label> For signed data, based on preceding
comparison instruction, jump to <label> if
<op1> > <op2>.
Label must be defined exactly once.

Examples: cmp rax, 5
 jg wasGreater

 jge <label> For signed data, based on preceding
comparison instruction, jump to <label> if
<op1>  <op2>.
Label must be defined exactly once.

Examples: cmp rax, 5
 jge wasGreaterOrEqual

 jb <label> For unsigned data, based on preceding
comparison instruction, jump to <label> if
<op1> < <op2>.
Label must be defined exactly once.

Examples: cmp rax, 5
 jb wasLess

 jbe <label> For unsigned data, based on preceding
comparison instruction, jump to <label> if
<op1>  <op2>.
Label must be defined exactly once.

Examples: cmp rax, 5
 jbe wasLessOrEqual

 ja <label> For unsigned data, based on preceding
comparison instruction, jump to <label> if
<op1> > <op2>.
Label must be defined exactly once.

Page 117

Chapter 7.0 ◄ Instruction Set Overview

Instruction Explanation

Examples: cmp rax, 5
 ja wasGreater

 jae <label> For unsigned data, based on preceding
comparison instruction, jump to <label> if
<op1>  <op2>.
Label must be defined exactly once.

Examples: cmp rax, 5
 jae wasGreaterOrEqual

A more complete list of the instructions is located in Appendix B.

 7.7.4 Iteration
The basic control instructions outlined provide a means to iterate or loop.

A basic loop can be implemented consisting of a counter which is checked at either the
bottom or top of a loop with a compare and conditional jump.

For example, assuming the following declarations:
lpCnt dq 15
sum dq 0

The following code would sum the odd integers from 1 to 30:
mov rcx, qword [lpCnt] ; loop counter
mov rax, 1 ; odd integer counter

sumLoop:
add qword [sum], rax ; sum current odd integer
add rax, 2 ; set next odd integer
dec rcx ; decrement loop counter
cmp rcx, 0
jne sumLoop

This is just one of many different ways to accomplish the odd integer summation task.
In this example, rcx was used as a loop counter and rax was used for the current odd
integer (appropriately initialized to 1 and incremented by 2).

Page 118

Chapter 7.0 ◄ Instruction Set Overview

The process shown using rcx as a counter is useful when looping a predetermined
number of times. There is a special instruction, loop, provides looping support.

The general format is as follows:
loop <label>

Which will perform the decrement of the rcx register, comparison to 0, and jump to the
specified label if rcx ≠ 0. The label must be defined exactly once.

As such, the loop instruction provides the same functionality as the three lines of code
from the previous example program. The following sets of code are equivalent:

Code Set 1 Code Set 2
loop <label> dec rcx

cmp rcx, 0
jne <label>

For example, the previous program can be written as follows:
mov rcx, qword [maxN] ; loop counter
mov rax, 1 ; odd integer counter

sumLoop:
add qword [sum], rax ; sum current odd integer
add rax, 2 ; set next odd integer
loop sumLoop

Both code examples produce the exact same result in the same manner.

Since the rcx register is decremented and then checked, forgetting to set the rcx register
could result in looping an unknown number of times. This is likely to generate an error
during the loop execution, which can be very misleading when debugging.

The loop instruction can be useful when coding, but it is limited to the rcx register and
to counting down. If nesting loops are required, the use of a loop instruction for both
the inner and outer loop can cause a conflict unless additional actions are taken (i.e.,
save/restore rcx register as required for inner loop).

While some of the programming examples in this text will use the loop instruction, it is
not required.

The loop instruction is summarized as follows:

Page 119

Chapter 7.0 ◄ Instruction Set Overview

Instruction Explanation
 loop <label> Decrement rcx register and jump to <label> if

rcx is ≠ 0.
Note, label must be defined exactly once.

Examples: loop startLoop
 loop ifDone
 loop sumLoop

A more complete list of the instructions is located in Appendix B.

 7.8 Example Program, Sum of Squares
The following is a complete example program to find the sum of squares from 1 to n.
For example, the sum of squares for 10 is as follows:

12 + 22 + ⋯ + 102 = 385
This example main initializes the n value to 10 to match the above example.

; Simple example program to compute the
; sum of squares from 1 to n.
; **
; Data declarations
section .data
; -----
; Define constants
SUCCESS equ 0 ; Successful operation
SYS_exit equ 60 ; call code for terminate
; Define Data.
n dd 10
sumOfSquares dq 0
; ***
section .text

Page 120

Chapter 7.0 ◄ Instruction Set Overview

global _start
_start:
; -----
; Compute sum of squares from 1 to n (inclusive).
; Approach:
; for (i=1; i<=n; i++)
; sumOfSquares += i^2;

mov rbx, 1 ; i
mov ecx, dword [n]

sumLoop:
mov rax, rbx ; get i
mul rax ; i^2
add qword [sumOfSquares], rax
inc rbx
loop sumLoop

; -----
; Done, terminate program.
last:

mov rax, SYS_exit ; call code for exit
mov rdi, SUCCESS ; exit with success
syscall

The debugger can be used to examine the results and verify correct execution of the
program.

 7.9 Exercises
Below are some quiz questions and suggested projects based on this chapter.

 7.9.1 Quiz Questions
Below are some quiz questions based on this chapter.

1) Which of the following instructions is legal / illegal? As appropriate, provide an
explanation.

1. mov rax, 54

2. mov ax, 54

Page 121

Chapter 7.0 ◄ Instruction Set Overview

3. mov al, 354

4. mov rax, r11

5. mov rax, r11d

6. mov 54, ecx

7. mov rax, qword [qVar]

8. mov rax, qword [bVar]

9. mov rax, [qVar]

10. mov rax, qVar

11. mov eax, dword [bVar]

12. mov qword [qVar2], qword [qVar1]

13. mov qword [bVar2], qword [qVar1]

14. mov r15, 54

15. mov r16, 54

16. mov r11b, 54

2) Explain what each of the following instructions does.

1. movzx rsi, byte [bVar1]

2. movsx rsi, byte [bVar1]

3) What instruction is used to:

1. convert an unsigned byte in al into a word in ax.

2. convert a signed byte in al into a word in ax.

4) What instruction is used to:

1. convert an unsigned word in ax into a double-word in eax.

2. convert a signed word in ax into a double-word in eax.

5) What instruction is used to:

1. convert an unsigned word in ax into a double-word in dx:ax.

2. convert a signed word in ax into a double-word in dx:ax.

Page 122

Chapter 7.0 ◄ Instruction Set Overview

6) Explain the difference between the cwd instruction and the movsx instructions.

7) Explain why the explicit specification (dword in this example) is required on the
first instruction and is not required on the second instruction.

1. add dword [dVar], 1

2. add [dVar], eax

8) Given the following code fragment:
mov rax, 9
mov rbx, 2
add rbx, rax

What would be in the rax and rbx registers after execution? Show answer in
hex, full register size.

9) Given the following code fragment:
mov rax, 9
mov rbx, 2
sub rax, rbx

What would be in the rax and rbx registers after execution? Show answer in
hex, full register size.

10) Given the following code fragment:
mov rax, 9
mov rbx, 2
sub rbx, rax

What would be in the rax and rbx registers after execution? Show answer in
hex, full register size.

11) Given the following code fragment:
mov rax, 4
mov rbx, 3
imul rbx

What would be in the rax and rdx registers after execution? Show answer in
hex, full register size.

12) Given the following code fragment:
mov rax, 5
cqo

Page 123

Chapter 7.0 ◄ Instruction Set Overview

mov rbx, 3
idiv rbx

What would be in the rax and rdx registers after execution? Show answer in
hex, full register size.

13) Given the following code fragment:
mov rax, 11
cqo
mov rbx, 4
idiv rbx

What would be in the rax and rdx registers after execution? Show answer in
hex, full register size.

14) Explain why each of the following statements will not work.

1. mov 42, eax

2. div 3

3. mov dword [num1], dword [num2]

4. mov dword [ax], 800

15) Explain why the following code fragment will not work correctly.
mov eax, 500
mov ebx, 10
idiv ebx

16) Explain why the following code fragment will not work correctly.
mov eax, -500
cdq
mov ebx, 10
div ebx

17) Explain why the following code fragment will not work correctly.
mov ax, -500
cwd
mov bx, 10
idiv bx
mov dword [ans], eax

18) Under what circumstances can the three-operand multiple be used?

Page 124

Chapter 7.0 ◄ Instruction Set Overview

 7.9.2 Suggested Projects
Below are some suggested projects based on this chapter.

1) Create a program to compute the following expressions using unsigned byte
variables and unsigned operations. Note, the first letter of the variable name
denotes the size (b → byte and w → word).

1. bAns1 = bNum1 + bNum2

2. bAns2 = bNum1 + bNum3

3. bAns3 = bNum3 + bNum4

4. bAns6 = bNum1 – bNum2

5. bAns7 = bNum1 – bNum3

6. bAns8 = bNum2 – bNum4

7. wAns11 = bNum1 * bNum3

8. wAns12 = bNum2 * bNum2

9. wAns13 = bNum2 * bNum4

10. bAns16 = bNum1 / bNum2

11. bAns17 = bNum3 / bNum4

12. bAns18 = wNum1 / bNum4

13. bRem18 = wNum1 % bNum4

Use the debugger to execute the program and display the final results. Create a
debugger input file to show the results in both decimal and hexadecimal.

2) Repeat the previous program using signed values and signed operations. Use the
debugger to execute the program and display the final results. Create a debugger
input file to show the results in both decimal and hexadecimal.

3) Create a program to complete the following expressions using unsigned word
sized variables. Note, the first letter of the variable name denotes the size (w →
word and d → double-word).

1. wAns1 = wNum1 + wNum2

2. wAns2 = wNum1 + wNum3

Page 125

Chapter 7.0 ◄ Instruction Set Overview

3. wAns3 = wNum3 + wNum4

4. wAns6 = wNum1 – wNum2

5. wAns7 = wNum1 – wNum3

6. wAns8 = wNum2 – wNum4

7. dAns11 = wNum1 * wNum3

8. dAns12 = wNum2 * wNum2

9. dAns13 = wNum2 * wNum4

10. wAns16 = wNum1 / wNum2

11. wAns17 = wNum3 / wNum4

12. wAns18 = dNum1 / wNum4

13. wRem18 = dNum1 % wNum4

Use the debugger to execute the program and display the final results. Create a
debugger input file to show the results in both decimal and hexadecimal.

4) Repeat the previous program using signed values and signed operations. Use the
debugger to execute the program and display the final results. Create a debugger
input file to show the results in both decimal and hexadecimal.

5) Create a program to complete the following expressions using unsigned double-
word sized variables. Note, the first letter of the variable name denotes the size
(d → double-word and q → quadword).

1. dAns1 = dNum1 + dNum2

2. dAns2 = dNum1 + dNum3

3. dAns3 = dNum3 + dNum4

4. dAns6 = dNum1 – dNum2

5. dAns7 = dNum1 – dNum3

6. dAns8 = dNum2 – dNum4

7. qAns11 = dNum1 * dNum3

8. qAns12 = dNum2 * dNum2

9. qAns13 = dNum2 * dNum4

Page 126

Chapter 7.0 ◄ Instruction Set Overview

10. dAns16 = dNum1 / dNum2

11. dAns17 = dNum3 / dNum4

12. dAns18 = qNum1 / dNum4

13. dRem18 = qNum1 % dNum4

Use the debugger to execute the program and display the final results. Create a
debugger input file to show the results in both decimal and hexadecimal.

6) Repeat the previous program using signed values and signed operations. Use the
debugger to execute the program and display the final results. Create a debugger
input file to show the results in both decimal and hexadecimal.

7) Implement the example program to compute the sum of squares from 1 to n.
Use the debugger to execute the program and display the final results. Create a
debugger input file to show the results in both decimal and hexadecimal.

8) Create a program to compute the square of the sum from 1 to n. Specifically,
compute the sum of integers from 1 to n and then square the value. Use the
debugger to execute the program and display the final results. Create a debugger
input file to show the results in both decimal and hexadecimal.

9) Create a program to iteratively find the nth Fibonacci number37. The value for n
should be set as a parameter (e.g., a programmer defined constant). The formula
for computing Fibonacci is as follows:

fibonacci(n) = { n if n=0 or n=1
fibonacci (n−2) +

fibonacci (n−1) if n≥2

Use the debugger to execute the program and display the final results. Test the
program for various values of n. Create a debugger input file to show the results
in both decimal and hexadecimal.

37 For more information, refer to: http://en.wikipedia.org/wiki/Fibonacci_number

Page 127

Chapter 7.0 ◄ Instruction Set Overview

Page 128

 8.0 Addressing Modes
This chapter provides some basic information regarding addressing modes and the
associated address manipulations on the x86-64 architecture.

The addressing modes are the supported methods for accessing a value in memory using
the address of a data item being accessed (read or written). This might include the name
of a variable or the location in an array.

The basic addressing modes are:

• Register

• Immediate

• Memory

Each of these modes is described with examples in the following sections. Additionally,
a simple example for accessing an array is presented.

 8.1 Addresses and Values
On a 64-bit architecture, addresses require 64-bits.

As noted in the previous chapter, the only way to access memory is with the brackets
([]'s). Omitting the brackets will not access memory and instead obtain the address of
the item. For example:

mov rax, qword [var1] ; value of var1 in rax
mov rax, var1 ; address of var1 in rax

Since omitting the brackets is not an error, the assembler will not generate error
messages or warnings.

Page 129

Chapter
8

Why did the programmer quit his job?
Because he didn't get arrays.

Chapter 8.0 ◄ Addressing Modes

When accessing memory, in many cases the operand size is clear. For example, the
instruction

mov eax, [rbx]
moves a double-word from memory. However, for some instructions the size can be
ambiguous. For example,

inc [rbx] ; error

is ambiguous since it is not clear if the memory being accessed is a byte, word, or
double-word. In such a case, operand size must be specified with either the byte, word,
or dword, qword size qualifier. For example,

inc byte [rbx]
inc word [rbx]
inc dword [rbx]

each instruction requires the size specification in order to be clear and legal.

 8.1.1 Register Mode Addressing
Register mode addressing means that the operand is a CPU register (eax, ebx, etc.). For
example:

mov eax, ebx

Both eax and ebx are in register mode addressing.

 8.1.2 Immediate Mode Addressing
Immediate mode addressing means that the operand is an immediate value. For
example:

mov eax, 123

The destination operand, eax , is register mode addressing. The 123 is immediate mode
addressing. It should be clear that the destination operand in this example cannot be
immediate mode.

 8.1.3 Memory Mode Addressing
Memory mode addressing means that the operand is a location in memory (accessed via
an address). This is referred to as indirection or dereferencing.

Page 130

Chapter 8.0 ◄ Addressing Modes

The most basic form of memory mode addressing has been used extensively in the
previous chapter. Specifically, the instruction:

mov rax, qword [qNum]

Will access the memory location of the variable qNum and retrieve the value stored
there. This requires that the CPU wait until the value is retrieved before completing the
operation and thus might take slightly longer to complete than a similar operation using
an immediate value.

When accessing arrays, a more generalized method is required. Specifically, an address
can be placed in a register and indirection performed using the register (instead of the
variable name).

For example, assuming the following declaration:
lst dd 101, 103, 105, 107

The decimal value of 101 is 0x00000065 in hex. The memory picture would be as
follows:

Value Address Offset Index

00 0x6000ef lst + 15

00 0x6000ee lst + 14

00 0x6000ed lst + 13

6b 0x6000ec lst + 12 lst[3]

00 0x6000eb lst + 11

00 0x6000ea lst + 10

00 0x6000e9 lst + 9

69 0x6000e8 lst + 8 lst[2]

00 0x6000e7 lst + 7

00 0x6000e6 lst + 6

00 0x6000e5 lst + 5

67 0x6000e4 lst + 4 lst[1]

00 0x6000e3 lst + 3

00 0x6000e2 lst + 2

00 0x6000e1 lst + 1

lst → 65 0x6000e0 lst + 0 lst[0]

Page 131

Chapter 8.0 ◄ Addressing Modes

The first element of the array could be accessed as follows:
mov eax, dword [lst]

Another way to access the first element is as follows:
mov rbx, list
mov eax, dword [rbx]

In this example, the starting address, or base address, of the list is placed in rbx (first
line) and then the value at that address is accessed and placed in the rax register (second
line). This allows us to easily access other elements in the array.

Recall that memory is “byte addressable”, which means that each address is one byte of
information. A double-word variable is 32-bits or 4 bytes so each array element uses 4
bytes of memory. As such, the next element (103) is the starting address (lst) plus 4,
and the next element (105) is the starting address (lst) 8.

Increasing the offset by 4 for each successive element. A list of bytes would increase by
1, a list of words would increase by 2, a list of double-words would increase by 4, and a
list of quadwords would increase by 8.

The offset is the amount added to the base address. The index is the array element
number as used in a high-level language.

There are several ways to access the array elements. One is to use a base address and
add a displacement. For example, given the initializations:

mov rbx, lst
mov rsi, 8

Each of the following instructions access the third element (105 in the above list).
mov eax, dword [lst+8]
mov eax, dword [rbx+8]
mov eax, dword [rbx+rsi]

In each case, the starting address plus 8 was accessed and the value of 105 placed in the
eax register. The displacement is added and the memory location accessed while none
of the source operand registers (rbx, rsi) are altered. The specific method used is up to
the programmer.

In addition, the displacement may be computed in more complex ways.

Page 132

Chapter 8.0 ◄ Addressing Modes

The general format of memory addressing is as follows:
[baseAddr + (indexReg * scaleValue) + displacement]

Where baseAddr is a register or a variable name. The indexReg must be a register. The
scaleValue is an immediate value of 1, 2, 4, 8 (1 is legal, but not useful). The
displacement must be an immediate value. The total represents a 64-bit address.

Elements may be used in any combination, but must be legal and result in a valid
address.

Some example of memory addressing for the source operand are as follows:
mov eax, dword [var1]
mov rax, qword [rbx+rsi]
mov ax, word [lst+4]
mov bx, word [lst+rdx+2]
mov rcx, qword [lst+(rsi*8)]
mov al, byte [buff-1+rcx]
mov eax, dword [rbx+(rsi*4)+16]

For example, to access the 3rd element of the previously defined double-word array
(which is index 2 since index's start at 0):

mov rsi, 2 ; index=2
mov eax, dword [lst+rsi*4] ; get lst[2]

Since addresses are always qword (on a 64-bit architecture), a 64-bit register is used for
the memory mode addressing (even when accessing double-word values). This allows a
register to be used more like an array index (from a high-level language).

For example, the memory operand, [lst+rsi*4], is analogous to lst[rsi] from a high-level
language. The rsi register is multiplied by the data size (4 in this example since each
element is 4 bytes).

 8.2 Example Program, List Summation
The following example program will sum the numbers in a list.

; Simple example to the sum and average for
; a list of numbers.
; ***
; Data declarations

Page 133

Chapter 8.0 ◄ Addressing Modes

section .data
; -----
; Define constants
EXIT_SUCCESS equ 0 ; successful operation
SYS_exit equ 60 ; call code for terminate
; -----
; Define Data.
section .data

lst dd 1002, 1004, 1006, 1008, 10010
len dd 5
sum dd 0

; **
section .text
global _start
_start:
; -----
; Summation loop.

mov ecx, dword [len] ; get length value
mov rsi, 0 ; index=0

sumLoop:
mov eax, dword [lst+(rsi*4)] ; get lst[rsi]
add dword [sum], eax ; update sum
inc rsi ; next item
loop sumLoop

; -----
; Done, terminate program.
last:

mov rax, SYS_exit ; call code for exit
mov rdi, EXIT_SUCCESS ; exit with success
syscall

The ()'s within the []'s are not required and added only for clarity. As such, the [lst+
(rsi*4)], is exactly the same as [lst+rsi*4].

Page 134

Chapter 8.0 ◄ Addressing Modes

 8.3 Example Program, Pyramid Areas and Volumes
This example is a simple assembly language program to calculate some geometric
information for each square pyramid in a series of square
pyramids. Specifically, the program will find the lateral total
surface area (including the base) and volume of each square
pyramid in a set of square pyramids.

Once the values are computed, the program finds the
minimum, maximum, sum, and average for the total surface
areas and volumes.

All data are unsigned values (i.e., uses mul and div, not imul
or idiv).

This basic approach used in this example is the loop to calculate the surface areas and
volumes arrays. A second loop is used to find the sum, minimum, and maximum for
each array. To find the minimum and maximum values, the minimum and maximum
variables are each initialized to the first value in the list. Then, every element in the list
is compared to the current minimum and maximum. If the current value from the list is
less than the current minimum, the minimum is set to the current value (over-writing the
previous value). When all values have been checked, the minimum will represent the
true minimum from the list. If the current value from the list is more than the current
maximum, the maximum is set to the current value (over-writing the previous value).
When all values have been checked, the maximum will represent the true maximum
from the list.

; Example assembly language program to calculate the
; geometric information for each square pyramid in
; a series of square pyramids.
; The program calculates the total surface area
; and volume of each square pyramid.
; Once the values are computed, the program finds
; the minimum, maximum, sum, and average for the
; total surface areas and volumes.
; -----
; Formulas:
; totalSurfaceAreas(n) = aSides(n) *
; (2*aSides(n)*sSides(n))

Page 135

Chapter 8.0 ◄ Addressing Modes

; volumes(n) = (aSides(n)^2 * heights(n)) / 3
; ***
section .data
; -----
; Define constants
EXIT_SUCCESS equ 0 ; successful operation
SYS_exit equ 60 ; call code for terminate
; -----
; Provided Data
aSides db 10, 14, 13, 37, 54

db 31, 13, 20, 61, 36
db 14, 53, 44, 19, 42
db 27, 41, 53, 62, 10
db 19, 18, 14, 10, 15
db 15, 11, 22, 33, 70
db 15, 23, 15, 63, 26
db 24, 33, 10, 61, 15
db 14, 34, 13, 71, 81
db 38, 13, 29, 17, 93

sSides dw 1233, 1114, 1773, 1131, 1675
dw 1164, 1973, 1974, 1123, 1156
dw 1344, 1752, 1973, 1142, 1456
dw 1165, 1754, 1273, 1175, 1546
dw 1153, 1673, 1453, 1567, 1535
dw 1144, 1579, 1764, 1567, 1334
dw 1456, 1563, 1564, 1753, 1165
dw 1646, 1862, 1457, 1167, 1534
dw 1867, 1864, 1757, 1755, 1453
dw 1863, 1673, 1275, 1756, 1353

heights dd 14145, 11134, 15123, 15123, 14123
dd 18454, 15454, 12156, 12164, 12542
dd 18453, 18453, 11184, 15142, 12354
dd 14564, 14134, 12156, 12344, 13142
dd 11153, 18543, 17156, 12352, 15434

Page 136

Chapter 8.0 ◄ Addressing Modes

dd 18455, 14134, 12123, 15324, 13453
dd 11134, 14134, 15156, 15234, 17142
dd 19567, 14134, 12134, 17546, 16123
dd 11134, 14134, 14576, 15457, 17142
dd 13153, 11153, 12184, 14142, 17134

length dd 50
taMin dd 0
taMax dd 0
taSum dd 0
taAve dd 0
volMin dd 0
volMax dd 0
volSum dd 0
volAve dd 0
; -----
; Additional variables
ddTwo dd 2
ddThree dd 3
; ---
; Uninitialized data
section .bss
totalAreas resd 50
volumes resd 50
; ***
section .text
global _start
_start:
; Calculate volume, lateral and total surface areas

mov ecx, dword [length] ; length counter
mov rsi, 0 ; index

calculationLoop:

Page 137

Chapter 8.0 ◄ Addressing Modes

; totalAreas(n) = aSides(n) * (2*aSides(n)*sSides(n))
movzx r8d, byte [aSides+rsi] ; aSides[i]
movzx r9d, word [sSides+rsi*2] ; sSides[i]
mov eax, r8d
mul dword [ddTwo]
mul r9d
mul r8d
mov dword [totalAreas+rsi*4], eax

; volumes(n) = (aSides(n)^2 * heights(n)) / 3
movzx eax, byte [aSides+rsi]
mul eax
mul dword [heights+rsi*4]
div dword [ddThree]
mov dword [volumes+rsi*4], eax
inc rsi
loop calculationLoop

; -----
; Find min, max, sum, and average for the total
; areas and volumes.

mov eax, dword [totalAreas]
mov dword [taMin], eax
mov dword [taMax], eax
mov eax, dword [volumes]
mov dword [volMin], eax
mov dword [volMax], eax
mov dword [taSum], 0
mov dword [volSum], 0
mov ecx, dword [length]
mov rsi, 0

statsLoop:
mov eax, dword [totalAreas+rsi*4]
add dword [taSum], eax

Page 138

Chapter 8.0 ◄ Addressing Modes

cmp eax, dword [taMin]
jae notNewTaMin
mov dword [taMin], eax

notNewTaMin:
cmp eax, dword [taMax]
jbe notNewTaMax
mov dword [taMax], eax

notNewTaMax:
mov eax, dword [volumes+rsi*4]
add dword [volSum], eax
cmp eax, dword [volMin]
jae notNewVolMin
mov dword [volMin], eax

notNewVolMin:
cmp eax, dword [volMax]
jbe notNewVolMax
mov dword [volMax], eax

notNewVolMax:
inc rsi
loop statsLoop

; -----
; Calculate averages.

mov eax, dword [taSum]
mov edx, 0
div dword [length]
mov dword [taAve], eax
mov eax, dword [volSum]
mov edx, 0
div dword [length]
mov dword [volAve], eax

; -----
; Done, terminate program.
last:

mov rax, SYS_exit ; call code for exit

Page 139

Chapter 8.0 ◄ Addressing Modes

mov rdi, EXIT_SUCCESS ; exit with success
syscall

This is one example. There are multiple other valid approaches to solving this problem.

 8.4 Exercises
Below are some quiz questions and suggested projects based on this chapter.

 8.4.1 Quiz Questions
Below are some quiz questions based on this chapter.

1) Explain the difference between the following two instructions:

1. mov rdx, qword [qVar1]

2. mov rdx, qVar1
2) What is the address mode of the source operand for each of the instructions listed

below. Respond with Register, Immediate, Memory, or Illegal Instruction.

 Note, mov <dest>, <source>
mov ebx, 14
mov ecx, dword [rbx]
mov byte [rbx+4], 10
mov 10, rcx
mov dl, ah
mov ax, word [rsi+4]
mov cx, word [rbx+rsi]
mov ax, byte [rbx]

3) Given the following variable declarations and code fragment:

ans1 dd 7
mov rax, 3
mov rbx, ans1
add eax, dword [rbx]

Page 140

Chapter 8.0 ◄ Addressing Modes

What would be in the eax register after execution? Show answer in hex, full
register size.

4) Given the following variable declarations and code fragment:
list1 dd 2, 3, 4, 5, 6, 7
mov rbx, list1
add rbx, 4
mov eax, dword [rbx]
mov edx, dword [list1]

What would be in the eax and edx registers after execution? Show answer in
hex, full register size.

5) Given the following variable declarations and code fragment:

lst dd 2, 3, 5, 7, 9
 mov rsi, 4
 mov eax, 1
 mov rcx, 2

lp: add eax, dword [lst+rsi]
 add rsi, 4
 loop lp
 mov ebx, dword [lst]

What would be in the eax, ebx, rcx, and rsi registers after execution? Show
answer in hex, full register size. Note, pay close attention to the register sizes
(32-bit vs. 64-bit).

6) Given the following variable declarations and code fragment:
list dd 8, 6, 4, 2, 1, 0
 mov rbx, list
 mov rsi, 1
 mov rcx, 3
 mov edx, dword [rbx]

lp: mov eax, dword [list+rsi*4]
 inc rsi
 loop lp
 imul dword [list]

Page 141

Chapter 8.0 ◄ Addressing Modes

What would be in the eax, edx, rcx, and rsi registers after execution? Show
answer in hex, full register size. Note, pay close attention to the register sizes
(32-bit vs. 64-bit).

7) Given the following variable declarations and code fragment:
list dd 8, 7, 6, 5, 4, 3, 2, 1, 0

mov rbx, list
mov rsi, 0
mov rcx, 3
mov edx, dword [rbx]

lp: add eax, dword [list+rsi*4]
inc rsi
loop lp
cdq
idiv dword [list]

What would be in the eax, edx, rcx, and rsi registers after execution? Show
answer in hex, full register size. Note, pay close attention to the register sizes
(32-bit vs. 64-bit).

8) Given the following variable declarations and code fragment:
list dd 2, 7, 4, 5, 6, 3

mov rbx, list
mov rsi, 1
mov rcx, 2
mov eax, 0
mov edx, dword [rbx+4]

lp: add eax, dword [rbx+rsi*4]
add rsi, 2
loop lp
imul dword [rbx]

What would be in the eax, edx, rcx, and rsi registers after execution? Show
answer in hex, full register size. Note, pay close attention to the register sizes
(32-bit vs. 64-bit).

Page 142

Chapter 8.0 ◄ Addressing Modes

 8.4.2 Suggested Projects
Below are some suggested projects based on this chapter.

1) Implement the example program to sum a list of numbers. Use the debugger to
execute the program and display the final results. Create a debugger input file to
show the results.

2) Update the example program from the previous question to find the maximum,
minimum, and average for the list of numbers. Use the debugger to execute the
program and display the final results. Create a debugger input file to show the
results.

3) Implement the example program to compute the lateral total surface area
(including the base) and volume of each square pyramid in a set of square
pyramids. Once the values are computed, the program finds the minimum,
maximum, sum, and average for the total surface areas and volumes. Use the
debugger to execute the program and display the final results. Create a debugger
input file to show the results.

4) Write an assembly language program to find the minimum, middle value,
maximum, sum, and integer average of a list of numbers. Additionally, the
program should also find the sum, count, and integer average for the negative
numbers. The program should also find the sum, count, and integer average for
the numbers that are evenly divisible by 3. Unlike the median, the 'middle value'
does not require the numbers to be sorted. Note, for an odd number of items, the
middle value is defined as the middle value. For an even number of values, it is
the integer average of the two middle values. Assume all data is unsigned. Use
the debugger to execute the program and display the final results. Create a
debugger input file to show the results.

5) Repeat the previous program using signed values and signed operations. Use the
debugger to execute the program and display the final results. Create a debugger
input file to show the results.

Page 143

Chapter 8.0 ◄ Addressing Modes

6) Create a program to sort a list of numbers. Use the following bubble sort38

algorithm:

for (i = (len-1) to 0) {
 swapped = false
 for (j = 0 to i-1)
 if (lst(j) > lst(j+1)) {
 tmp = lst(j)
 lst(j) = lst(j+1)
 lst(j+1) = tmp
 swapped = true
 }
 if (swapped = false) exit
}

Use the debugger to execute the program and display the final results. Create a
debugger input file to show the results.

38 For more information, refer to: http://en.wikipedia.org/wiki/Bubble_sort

Page 144

 9.0 Process Stack
In a computer, a stack is a type of data structure where items are added and then
removed from the stack in reverse order. That is, the most recently added item is the
very first one that is removed. This is often referred to as Last-In, First-Out (LIFO).

A stack is heavily used in programming for the storage of information during procedure
or function calls. The following chapter provides information and examples regarding
the stack.

Adding an item to a stack is referred to as a push or push operation. Removing an item
from a stack is referred to as a pop or pop operation.

It is expected that the reader will be familiar with the general concept of a stack.

 9.1 Stack Example
To demonstrate the general usage of the stack, given an array, a = {7, 19, 37},
consider the operations:

push a[0]
push a[1]
push a[2]

Followed by the operations:
pop a[0]
pop a[1]
pop a[2]

The initial push will push the 7, followed by the 19, and finally the 37. Since the stack
is last-in, first-out, the first item popped off the stack will be the last item pushed, or 37
in this example. The 37 is placed in the first element of the array (over-writing the 7).
As this continues, the order of the array elements is reversed.

Page 145

Chapter
9

A programmer is heading out to the grocery
store, and is asked to "get a gallon of milk,
and if they have eggs, get a dozen."
He returns with 12 gallons of milk.

Chapter 9.0 ◄ Process Stack

The following diagram shows the progress and the results.

stack stack stack stack stack stack

37
19 19 19

7 7 7 7 7 empty

push
a[0]

push
a[1]

push
a[2]

pop
a[0]

pop
a[1]

pop
a[2]

a = {7,
19, 37}

a = {7,
19, 37}

a = {7,
19, 37}

a =
{37,
19, 37}

a =
{37,
19, 37}

a =
{37,
19, 7}

The following sections provide more detail regarding the stack implementation and
applicable stack operations and instructions.

 9.2 Stack Instructions
A push operation puts things onto the stack, and a pop operation takes things off the
stack. The format for these commands is:

push <operand64>
pop <operand64>

The operand can be a register or memory, but an immediate is not allowed. In general,
push and pop operations will push the architecture size. Since the architecture is 64-bit,
we will push and pop quadwords.

The stack is implemented in reverse in memory. Refer to the following sections for a
detailed explanation of why.

Page 146

Chapter 9.0 ◄ Process Stack

The stack instructions are summarized as follows:

Instruction Explanation
 push <op64> Push the 64-bit operand on the stack.

First, adjusts rsp accordingly (rsp-8) and then
copy the operand to [rsp]. The operand may
not be an immediate value. Operand is not
changed.

Examples: push rax
 push qword [qVal] ; value
 push qVal ; address

 pop <op64> Pop the 64-bit operand from the stack. Adjusts
rsp accordingly (rsp+8). The operand may not
be an immediate value. Operand is
overwritten.

Examples: pop rax
 pop qword [qVal]
 pop rsi

If more than 64-bits must be pushed, multiple push operations would be required. While
it is possible to push and pop operands less than 64-bits, it is not recommended.

A more complete list of the instructions is located in Appendix B.

 9.3 Stack Implementation
The rsp register is used to point to the current top of stack in memory. In this
architecture, as with most, the stack is implemented growing downward in memory.

 9.3.1 Stack Layout
As noted in Chapter 2, Architecture, the general memory layout for a program is as
follows:

Page 147

Chapter 9.0 ◄ Process Stack

The heap is where dynamically allocated data will be placed (if requested). For
example, items allocated with the C++ new operator or the C malloc() system call. As
dynamically allocated data is created (at run-time), the heap typically grows upward.
However, the stack starts in high memory and grows downward. The stack is used to
temporarily store information such as call frames for function calls. A large program or
a recursive function may use a significant amount of stack space.

As the heap and stack expand, they grow toward each other. This is done to ensure the
most effective overall use of memory.

A program (Process A) that uses a significant amount of stack space and a minimal
amount of heap space will function. A program (Process B) that uses a minimal amount
of stack space and a very large amount of heap space will also function.

Page 148

high memory stack
.
.

. . . available memory . . .
.
.

heap
uninitialized data

data
text (code)

low memory reserved

Illustration 22: Process Memory Layout

Chapter 9.0 ◄ Process Stack

For example:

Of course, if the stack and heap meet, the program will crash. If that occurs, there is no
memory available.

 9.3.2 Stack Operations
The basic stack operations of push and pop adjust the stack pointer register, rsp, during
their operation.

For a push operation:

1. The rsp register is decreased by 8 (1 quadword).

2. The operand is copied to the stack at [rsp].
The operand is not altered. The order of these operations is important.

For a pop operation:

1. The current top of the stack, at [rsp], is copied into the operand.

2. The rsp register is increased by 8 (1 quadword).

The order of these operations is the exact reverse of the push. The item popped is not
actually deleted. However, the programmer cannot count on the item remaining on the

Page 149

Process A Process B

stack stack

heap heap
bss bss

data data
text (code) text (code)
reserved reserved

Illustration 23: Process Memory Layout Example

Chapter 9.0 ◄ Process Stack

stack after the pop operation. Previously pushed, but not popped, items can be accessed.

For example:
mov rax, 6700 ; 670010 = 00001A2C16
push rax
mov rax, 31 ; 3110 = 0000001F16
push rax

Would produce the following stack configuration (where each box is a byte):

. . .

00

00

00

00

00

00

1A

2C

00

00

00

00

00

00

00

 rsp → 1F

. . .

. . .

. . .

The layout shows the architecture is little-endian in that the least significant byte is
placed into the lowest memory location.

Page 150

Chapter 9.0 ◄ Process Stack

 9.4 Stack Example
The following is an example program to use the stack to reverse a list of quadwords in
place. Specifically, each value in a quadword array is placed on the stack in the first
loop. In the second loop, each element is removed from the stack and placed back into
the array (over-writing) the previous value.

; Simple example demonstrating basic stack operations.
; Reverse a list of numbers - in place.
; Method: Put each number on stack, then pop each number
; back off, and then put back into memory.
; ***
; Data declarations
section .data
; -----
; Define constants
EXIT_SUCCESS equ 0 ; successful operation
SYS_exit equ 60 ; call code for terminate
; -----
; Define Data.
numbers dq 121, 122, 123, 124, 125
len dq 5
; **
section .text
global _start
_start:
; Loop to put numbers on stack.

mov rcx, qword [len]
mov rbx, numbers
mov r12, 0
mov rax, 0

Page 151

Chapter 9.0 ◄ Process Stack

pushLoop:
push qword [rbx+r12*8]
inc r12
loop pushLoop

; -----
; All the numbers are on stack (in reverse order).
; Loop to get them back off. Put them back into
; the original list...

mov rcx, qword [len]
mov rbx, numbers
mov r12, 0

popLoop:
pop rax
mov qword [rbx+r12*8], rax
inc r12
loop popLoop

; -----
; Done, terminate program.
last:

mov rax, SYS_exit ; call code for exit
mov rdi, EXIT_SUCCESS ; exit with success
syscall

There are other ways to accomplish this function (reversing a list), however this is
meant to demonstrate the stack operations.

 9.5 Exercises
Below are some quiz questions and suggested projects based on this chapter.

 9.5.1 Quiz Questions
Below are some quiz questions based on this chapter.

1) Which register refers to the top of the stack?

2) What happens as a result of a push rax instruction (two things)?

3) How many bytes of data does the pop rax instruction remove from the stack?

Page 152

Chapter 9.0 ◄ Process Stack

4) Given the following code fragment:
mov r10, 1
mov r11, 2
mov r12, 3
push r10
push r11
push r12
pop r10
pop r11
pop r12

What would be in the r10 , r11, and r12 registers after execution? Show answer
in hex, full register size.

5) Given the following variable declarations and code fragment:

lst dq 1, 3, 5, 7, 9
mov rsi, 0
mov rcx, 5

lp1: push qword [lst+rsi*8]
inc rsi
loop lp1
mov rsi, 0
mov rcx, 5

lp2: pop qword [lst+rsi*8]
inc rsi
loop lp2
mov rbx, qword [lst]

Explain what would be the result of the code (after execution)?

6) Provide one advantage to the stack growing downward in memory.

 9.5.2 Suggested Projects
Below are some suggested projects based on this chapter.

1) Implement the example program to reverse a list of numbers. Use the debugger
to execute the program and display the final results. Create a debugger input file
to show the results.

Page 153

Chapter 9.0 ◄ Process Stack

2) Create a program to determine if a NULL terminated string representing a word
is a palindrome39. A palindrome is a word that reads the same forward or
backwards. For example, “anna”, “civic”, “hannah”, “kayak”, and “madam” are
palindromes. This can be accomplished by pushing the characters on the stack
one at a time and then comparing the stack items to the string starting from the
beginning. Use the debugger to execute the program and display the final
results. Create a debugger input file to show the results.

3) Update the previous program to test if a phrase is a palindrome. The general
approach using the stack is the same, however, spaces and punctuation must be
skipped. For example, “A man, a plan, a canal – Panama!” is a palindrome. The
program must ignore the comma, dash, and exclamation point. Use the debugger
to execute the program and display the final results. Create a debugger input file
to show the results.

39 For more information, refer to: http://en.wikipedia.org/wiki/Palindrome

Page 154

 10.0 Program Development
Writing or developing programs is easier when following a clear methodology. The
main steps in the methodology are:

● Understand the Problem
● Create the Algorithm
● Implement the Program
● Test/Debug the Program

To help demonstrate this process in detail, these steps will be applied to a simple
example problem in the following sections.

 10.1 Understand the Problem
Before attempting to create a solution, it is important to fully understand the problem.
Ensuring a complete understanding of the problem can help reduce errors and save time
and effort. The first step is to understand what is required, especially the applicable
input information and expected results or output.

Consider the problem of converting a single integer number into a string or series of
characters representing that integer. To be clear, an integer can be used for numeric
calculations, but cannot be displayed to the console (as it is). A string can be displayed
to the console but not used in numeric calculations.

For this example, only unsigned (positive only) values will be considered. The small
extra effort to address signed values is left to the reader as an exercise.

As an unsigned double-word integer, the numeric value 149810 would be represented as
0x000005DA in hex (double-word sized). The integer number 149810 (0x000005DA)
would be represented by the string “1”, “4”, “9”, “8” with a NULL termination. This
would require a total of 5 bytes since there is no sign or leading spaces required for this
specific example. As such, the string “1498” would be represented as follows:

Page 155

Chapter
10

CAPS LOCK – Preventing login since 1980.

Chapter 10.0 ◄ Program Development

Character “1” “4” “9” “8” NULL

ASCII Value (decimal) 49 52 57 56 0

ASCII Value (hex) 0x31 0x34 0x39 0x38 0x0

The goal is to convert the single integer number into the appropriate series of characters
to form a NULL terminated string.

 10.2 Create the Algorithm
The algorithm is the name for the unambiguous, ordered sequence of steps involved in
solving the problem. Once the program is understood, a series of steps can be
developed to solve that problem. There can be, and usually are, multiple correct
solutions to a given problem.

The process for creating an algorithm can be different for different people. In general,
some time should be devoted to thinking about possible solutions. This may involve
working on some possible solutions using a scratch piece of paper. Once an approach is
selected, that solution can be developed into an algorithm. The algorithm should be
written down, reviewed, and refined. The algorithm is then used as the outline of the
program.

For example, we will consider the integer to ASCII conversion problem outlined in the
previous section. To convert a single digit integer (0-9) into a character, 4810 (or “0” or
0x30) can be added to the integer. For example, 0x01 + 0x30 is 0x31 which is the
ASCII value of “1”. It should be obvious that this trick will only work for single digit
numbers (0-9).

In order to convert a larger integer ( 10) into a string, the integer must be broken into
its component digits. For example, 12310 (0x7B) would be 1, 2, and 3. This can be
accomplished by repeatedly performing integer division by 10 until a 0 result is
obtained.

For example;

Page 156

Chapter 10.0 ◄ Program Development

123
10

= 12 remainder 3

12
10

= 1 remainder 2

1
10

= 0 remainder 1

As can be seen, the remainder represents the individual digits. However, they are
obtained in reverse order. To address this, the program can push the remainder and,
when done dividing, pop the remainders and convert to ASCII and store in a string
(which is an array of bytes).

This process forms the basis for the algorithm. It should be noted, that there are many
ways to develop this algorithm. One such approach is shown as follows:

; Part A - Successive division
; digitCount = 0
; get integer
; divideLoop:
; divide number by 10
; push remainder
; increment digitCount
; if (result > 0) goto divideLoop
; Part B – Convert remainders and store
; get starting address of string (array of bytes)
; idx = 0
; popLoop:
; pop intDigit
; charDigit = intDigit + “0” (0x030)
; string[idx] = charDigit
; increment idx
; decrement digitCount
; if (digitCount > 0) goto popLoop
; string[idx] = NULL

The algorithm steps are shown as program comments for convenience. The algorithm is
typically started on paper and then more formally written in pseudo-code as shown

Page 157

Chapter 10.0 ◄ Program Development

above. In the unlikely event the program does not work the first time, the comments are
the primary debugging checklist.

Some programmers skip the comments and will end up spending much more time
debugging. The commenting represents the algorithm and the code is the
implementation of that algorithm.

 10.3 Implement the Program
Based on the algorithm, a program can be developed and implemented. The algorithm
is expanded and the code added based on the steps outlined in the algorithm. This
allows the programmer to focus on the specific issues for the current section being
coded including the data types and data sizes. This example addresses only unsigned
data so the unsigned divide (DIV, not IDIV) is used. Since the integer is a double-word,
it must be converted into a quadword for the division. However, the result and the
remainder after division will also be a double-words. Since the stack is quadwords, the
entire quadword register will be pushed. The upper-order portion of the register will not
be accessed, so its contents are not relevant.

One possible implementation of the algorithm is as follows:

; Simple example program to convert an
; integer into an ASCII string.
; ***
; Data declarations
section .data
; -----
; Define constants
NULL equ 0
EXIT_SUCCESS equ 0 ; successful operation
SYS_exit equ 60 ; code for terminate
; -----
; Define Data.
intNum dd 1498
section .bss

Page 158

Chapter 10.0 ◄ Program Development

strNum resb 10
; ***
section .text
global _start
_start:
; Convert an integer to an ASCII string.
; -----
; Part A - Successive division

mov eax, dword [intNum] ; get integer
mov rcx, 0 ; digitCount = 0
mov ebx, 10 ; set for dividing by 10

divideLoop:
mov edx, 0
div ebx ; divide number by 10
push rdx ; push remainder
inc rcx ; increment digitCount
cmp eax, 0 ; if (result > 0)
jne divideLoop ; goto divideLoop

; -----
; Part B - Convert remainders and store

mov rbx, strNum ; get addr of string
mov rdi, 0 ; idx = 0

popLoop:
pop rax ; pop intDigit
add al, "0" ; char = int + "0"
mov byte [rbx+rdi], al ; string[idx] = char
inc rdi ; increment idx
loop popLoop ; if (digitCount > 0)

; goto popLoop
mov byte [rbx+rdi], NULL ; string[idx] = NULL

Page 159

Chapter 10.0 ◄ Program Development

; -----
; Done, terminate program.
last:

mov rax, SYS_exit ; call code for exit
mov rdi, EXIT_SUCCESS ; exit with success
syscall

There are many different valid implementations for this algorithm. The program should
be assembled to address any typos or syntax errors.

 10.4 Test/Debug the Program
Once the program is written, testing should be performed to ensure that the program
works. The testing will be based on the specific parameters of the program.

In this case, the program can be executed using the debugger and stopped near the end
of the program (e.g., at the label “last” in this example). After starting the debugger
with ddd, the command b last and run can be entered which will run the program
up to, but not executing the line referenced by the label “last”. The resulting string,
strNum can be viewed in the debugger with x/s &strNum will display the string
address and the contents which should be “1498”. For example;

(gdb) x/s &strNum
0x600104: "1498"

If the string is not displayed properly, it might be worth checking each character of the
five (5) byte array with the x/5cb &strNum debugger command. The output will
show the address of the string followed by both the decimal and ASCII representation.

For example;
(gdb) x/5cb &strNum
0x600104: 49 '1' 52 '4' 57 '9' 56 '8' 0 '\000'

The format of this output can be confusing initially.

If the correct output is not provided, the programmer will need to debug the code. For
this example, there are two main steps; successive division and conversion/storing the
remainders. The second step requires the first step to work, so the first step should be
verified. This can be done by using the debugger to focus only on the first section. In
this example, the first step should iterate exactly 4 times, so rcx should be 4.

Page 160

Chapter 10.0 ◄ Program Development

Additionally, 8, 9, 4, and 1 should be pushed on the stack in that order. This is easily
verified in the debugger by looking at the register contents of rdx when it is pushed or
by viewing the top 4 entries in the stack.

If that section works, the second section can be verified. Here, the values 1, 4, 9, and 8
should be coming off the stack (in that order). If so, the integer is converted into a
character by adding “0” (0x30) and that stored in the string, one character at a time. The
string can be viewed character by character to see if they are being entered into the
string correctly.

In this manner, the problem can be narrowed down fairly quickly. Efficient debugging
is a critical skill and must be honed by practice.

Refer to Chapter 6, DDD Debugger for additional information on specific debugger
commands.

 10.5 Error Terminology
In case the program does not work, it helps to understand some basic terminology about
where or what the error might be. Using the correct terminology ensures that you can
communicate effectively about the problem with others.

 10.5.1 Assembler Error
Assembler errors are generated when the program is assembled. This means that the
assembler does not understand one or more of the instructions. The assembler will
provide a list of errors and the line number of each error. It is recommended to address
the errors from the top down. Resolving an error at the top can clear multiple errors
further down.

Typical assembler errors include misspelling an instruction and/or omitting a variable
declaration.

 10.5.2 Run-time Error
A run-time error is something that causes the program to crash.

 10.5.3 Logic Error
A logic error is when the program executes, but does not produce the correct result. For
example, coding a provided formula incorrectly or attempting to compute the average of
a series of numbers before calculating the sum.

If the program has a logic error, one way to find the error is to display intermediate

Page 161

Chapter 10.0 ◄ Program Development

values. Further information will be provided in later chapters regarding advice on
finding logic errors.

 10.6 Exercises
Below are some quiz questions and suggested projects based on this chapter.

 10.6.1 Quiz Questions
Below are some quiz questions based on this chapter.

1) What is an algorithm?

2) What are the four main steps in algorithm development?

3) Are the four main steps in algorithm development applicable only to assembly
language programming?

4) What type of error, if any, occurs if the one operand multiply instruction uses an
immediate value operand? Respond with assemble-time or run-time.

5) If an assembly language instruction is spelled incorrectly (e.g., “mv” instead of
“mov”), when will the error be found? Respond with assemble-time or run-time.

6) If a label is referenced, but not defined, when will the error be found? Respond
with assemble-time or run-time.

7) If a program performing a series of divides on values in an array divides by 0,
when will the error be found? Respond with assemble-time or run-time.

 10.6.2 Suggested Projects
Below are some suggested projects based on this chapter.

1) Implement the example program to convert an integer into a string. Change the
original integer to a different value. Use the debugger to execute the program
and display the final results. Create a debugger input file to show the results.

2) Update the example program to address signed integers. This will require
including a preceding sign, “+” or “-” in the string. For example, -12310

(0xFFFFFF85) would be “-123” with a NULL termination (total of 5 bytes).
Additionally, the signed divide (IDIV, not DIV) and signed conversions (e.g.,
CDQ) must be used. Use the debugger to execute the program and display the
final results. Create a debugger input file to show the results.

3) Create a program to convert a string representing a numeric value into an integer.

Page 162

Chapter 10.0 ◄ Program Development

For example, given the NULL terminated string “41275” (a total of 6 bytes),
convert the string into a double-word sized integer (0x0000A13B). You may
assume the string and resulting integer is unsigned. Use the debugger to execute
the program and display the final results. Create a debugger input file to show
the results.

4) Update the previous program to address strings with a preceding sign (“+” or
“-”). This will require including a sign, “+” or “-” in the string. You must
ensure the final string is NULL terminated. You may assume the input strings
are valid. Use the debugger to execute the program and display the final results.
Create a debugger input file to show the results.

5) Update the previous program to convert strings into integers to include error
checking on the input string. Specifically, the sign must be valid and be the first
character in the string, each digit must be between “0” and “9”, and the string
NULL terminated. For example, the string “-321” is valid while “1+32” and
“+1R3” are both invalid. Use the debugger to execute the program and display
the final results. Create a debugger input file to show the results.

Page 163

Chapter 10.0 ◄ Program Development

Page 164

 11.0 Macros
An assembly language macro is a predefined set of instructions that can easily be
inserted wherever needed. Once defined, the macro can be used as many times as
necessary. It is useful when the same set of code must be utilized numerous times. A
macro can be useful to reduce the amount of coding, streamline programs, and reduce
errors from repetitive coding.

The assembler contains a powerful macro processor, which supports conditional
assembly, multi-level file inclusion, and two forms of macros (single-line and multi-
line), and a 'context stack' mechanism for extra macro power.

Before using a macro, it must be defined. Macro definitions should be placed in the
source file before the data and code sections. The macro is used in the text (code)
section. The following sections will present a detailed example with the definition and
use.

 11.1 Single-Line Macros
There are two key types of macros; single-line macros and multi-line macros. Each of
these is described in the following sections.

Single-line macros are defined using the %define directive. The definitions work in a
similar way to C/C++; so you can do things like:

%define mulby4(x) shl x, 2

And, then use the macro by entering:
mulby4 (rax)

in the source, which will multiply the contents to the rax register by 4 (via shifting two
bits).

Page 165

Chapter
11

Why did C++ decide not to go out with C?
Because C has no class.

Chapter 11.0 ◄ Macros

 11.2 Multi-Line Macros
Multi-line macros can include a varying number of lines (including one). The multi-line
macros are more useful and the following sections will focus primarily on multi-line
macros.

 11.2.1 Macro Definition
Before using a multi-line macro, it must first be defined. The general format is as
follows:

%macro <name> <number of arguments>
; [body of macro]

%endmacro

The arguments can be referenced within the macro by %<number>, with %1 being the
first argument, and %2 the second argument, and so forth.

In order to use labels, the labels within the macro must be prefixing the label name with
a %%.

This will ensure that calling the same macro multiple times will use a different label
each time. For example, a macro definition for the absolute value function would be as
follows:

%macro abs 1
 cmp %1, 0
 jge %%done
 neg %1
%%done:
%endmacro

Refer to the sample macro program for a complete example.

 11.2.2 Using a Macro
In order to use or “invoke” a macro, it must be placed in the code segment and referred
to by name with the appropriate number of arguments.

Page 166

Chapter 11.0 ◄ Macros

Given a data declaration as follows:
 qVar dq 4

Then, to invoke the “abs” macro (twice):
 mov eax, -3
 abs eax
 abs qword [qVar]

The list file will display the code as follows (for the first invocation):

 27 00000000 B8FDFFFFFF mov eax, -3
 28 abs eax
 29 00000005 3D00000000 <1> cmp %1, 0
 30 0000000A 7D02 <1> jge %%done
 31 0000000C F7D8 <1> neg %1
 32 <1> %%done:

The macro will be copied from the definition into the code, with the appropriate
arguments replaced in the body of the macro, each time it is used. The <1> indicates
code copied from a macro definition. In both cases, the %1 argument was replaced with
the given argument; eax in this example.

Macros use more memory, but do not require overhead for transfer of control (like
functions).

 11.3 Macro Example
The following example program demonstrates the definition and use of a simple macro.

; Example Program to demonstrate a simple macro
; **
; Define the macro
; called with three arguments:
; aver <lst>, <len>, <ave>
%macro aver 3
 mov eax, 0

mov ecx, dword [%2] ; length

Page 167

Chapter 11.0 ◄ Macros

mov r12, 0
lea rbx, [%1]

%%sumLoop:
add eax, dword [rbx+r12*4] ; get list[n]
inc r12
loop %%sumLoop
cdq
idiv dword [%2]
mov dword [%3], eax

%endmacro
; **
; Data declarations
section .data
; -----
; Define constants
EXIT_SUCCESS equ 0 ; success code
SYS_exit equ 60 ; code for terminate
; Define Data.
section .data
list1 dd 4, 5, 2, -3, 1
len1 dd 5
ave1 dd 0
list2 dd 2, 6, 3, -2, 1, 8, 19
len2 dd 7
ave2 dd 0
; **
section .text
global _start
_start:

Page 168

Chapter 11.0 ◄ Macros

; -----
; Use the macro in the program

aver list1, len1, ave1 ; 1st, data set 1
aver list2, len2, ave2 ; 2nd, data set 2

; -----
; Done, terminate program.
last:

mov rax, SYS_exit ; exit
mov rdi, EXIT_SUCCESS ; success
syscall

In this example, the macro is invoked twice. Each time the macro is used, it is copied
from the definition into the text section. As such, macros typically use more memory.

 11.4 Debugging Macros
The code for a macro will not be displayed in the debugger source window. When a
macro is working correctly, this is very convenient. However, when debugging macros,
the code must be viewable.

In order to see the macro code, display the machine code window (View → Machine
Code Window). In the window, the machine code for the instructions are displayed.
The step and next instructions will execute the entire macro. In order to execute the
macro instructions, the stepi and nexti commands must be used.

The code, when viewed, will be the expanded code (as opposed to the original macro’s
definition).

 11.5 Exercises
Below are some quiz questions and suggested projects based on this chapter.

 11.5.1 Quiz Questions
Below are some quiz questions based on this chapter.

1) Where is the macro definition placed in the assembly language source file?

2) When a macro is invoked, how many times is the code placed in the code
segment?

Page 169

Chapter 11.0 ◄ Macros

3) Explain why, in a macro, labels are typically preceded by a %% (double percent
sign).

4) Explain what might happen if the %% is not included on a label?

5) Is it legal to jump to a label that does not include the %%? If not legal, explain
why. If legal, explain under what circumstances that might be useful.

6) When does the macro argument substitution occur?

 11.5.2 Suggested Projects
Below are some suggested projects based on this chapter.

1) Implement the example program for a list average macro. Use the debugger to
execute the program and display the final results. Create a debugger input file to
show the results.

2) Update the program from the previous question to include the minimum and
maximum values. Use the debugger to execute the program and display the final
results. Create a debugger input file to show the results.

3) Create a macro to update an existing list by multiplying every element by 2.
Invoke the macro at least three times of three different data sets. Use the
debugger to execute the program and display the final results. Create a debugger
input file to show the results.

4) Create a macro from the integer to ASCII conversion example from the previous
chapter. Invoke the macro at least three times of three different data sets. Use
the debugger to execute the program and display the final results. Create a
debugger input file to show the results.

Page 170

 12.0 Functions
Functions and procedures (i.e., void functions) help break-up a program into smaller
parts making it easier to code, debug, and maintain. Function calls involve two main
actions:

• Linkage

◦ Since the function can be called from multiple different places in the code,
the function must be able to return to the correct place in which it was
originally called.

• Argument Transmission

◦ The function must be able to access parameters to operate on or to return
results (i.e., access call-by-reference parameters).

The specifics of how each of these actions are accomplished is explained in the
following sections.

 12.1 Updated Linking Instructions
When writing and debugging functions, it is easier for the C compiler (either gcc or
g++) to link the program as the C compiler is aware of the appropriate locations for the
various C/C++ libraries.

For example, assuming that the source file is named example.asm, the commands to
compile, assemble, link, and execute as follows:

yasm -g dwarf2 -f elf64 example.asm -l example.lst
gcc -g -o example example.o

Note, Ubuntu 18 and above will require the no-pie option on the gcc as shown:
gcc -g -no-pie -o example example.o

Page 171

Chapter
12

Why do programmers mix up Halloween
and Christmas?
Because 31 Oct = 25 Dec.

Chapter 12.0 ◄ Functions

This will use the GCC compiler to call the linker, reading the example.o object file and
creating the example executable file. The “-g” option includes the debugging
information in the executable file in the usual manner. The file names can be changed
as desired.

 12.2 Debugger Commands
When using the debugger to debug programs with functions, a review of the step and
next debugger commands may be helpful.

 12.2.1 Debugger Command, next
With respect to a function call, the debugger next command will execute the entire
function and go to the next line. When debugging functions, this is useful to quickly
execute the entire function and then just verify the results. It will not display any of the
function code.

 12.2.2 Debugger Command, step
With respect to a function call, the debugger step command will step into the function
and go to the first line of the function code. It will display the function code. When
debugging functions, this is useful to debug the function code.

 12.3 Stack Dynamic Local Variables
In a high-level language, non-static local variables declared in a function are stack
dynamic local variables by default. Some C++ texts refer to such variables as
automatics. This means that the local variables are created by allocating space on the
stack and assigning these stack locations to the variables. When the function completes,
the space is recovered and reused for other purposes. This requires a small amount of
additional run-time overhead, but makes a more efficient overall use of memory. If a
function with a large number of local variables is never called, the memory for the local
variables is never allocated. This helps reduce the overall memory footprint of the
program which generally helps the overall performance of the program.

In contrast, statically declared variables are assigned memory locations for the entire
execution of the program. This uses memory even if the associated function is not being
executed. However, no additional run-time overhead is required to allocate the space
since the space allocation has already been performed (when the program was initially
loaded into memory).

Page 172

Chapter 12.0 ◄ Functions

 12.4 Function Declaration
A function must be written before it can be used. Functions are located in the code
segment. The general format is:

global <procName>
<procName>:

; function body
ret

A function may be defined only once. There is no specific order required for how
functions are defined. However, functions cannot be nested. A function definition
should be started and ended before the next function’s definition can be started.

Refer to the sample functions for examples of function declarations and usage.

 12.5 Standard Calling Convention
To write assembly programs, a standard process for passing parameters, returning
values, and allocating registers between functions is needed. If each function did these
operations differently, things would quickly get very confusing and require
programmers to attempt to remember for each function how to handle parameters and
which registers were used. To address this, a standard process is defined and used
which is typically referred to as a standard calling convention40. There are actually a
number of different standard calling conventions. The 64-bit C calling convention,
called System V AMD64 ABI41 42, is described in the remainder of this document.

This calling convention is also used for C/C++ programs by default. This means that
interfacing assembly language code and C/C++ code is easily accomplished since the
same calling convention is used.

It must be noted that the standard calling convention presented here applies to Linux-
based operating systems. The standard calling convention for Microsoft Windows is
slightly different and not presented in this text.

40 For more information, refer to: http://en.wikipedia.org/wiki/Calling_convention
41 For more information, refer to:

https://en.wikipedia.org/wiki/X86_calling_conventions#System_V_AMD64_ABI
42 For complete details, refer to: https://software.intel.com/sites/default/files/article/402129/mpx-

linux64-abi.pdf

Page 173

Chapter 12.0 ◄ Functions

 12.6 Linkage
The linkage is about getting to and returning from a function call correctly. There are
two instructions that handle the linkage, call <funcName> and ret instructions.

The call transfers control to the named function, and ret returns control back to the
calling routine.

• The call works by saving the address of where to return to when the function
completes (referred to as the return address). This is accomplished by placing
contents of the rip register on the stack. Recall that the rip register points to the
next instruction to be executed (which is the instruction immediately after the
call).

• The ret instruction is used in a procedure to return. The ret instruction pops
the current top of the stack (rsp) into the rip register. Thus, the appropriate
return address is restored.

Since the stack is used to support the linkage, it is important that within the function the
stack must not be corrupted. Specifically, any items pushed must be popped. Pushing a
value and not popping would result in that value being popped off the stack and placed
in the rip register. This would cause the processor to attempt to execute code at that
location. Most likely the invalid location will cause the process to crash.

The function calling or linkage instruction is summarized as follows:

Instruction Explanation
 call <funcName> Calls a function. Push the 64-bit rip register

and jump to the <funcName>.

Examples: call printString

 ret Return from a function. Pop the stack into the
rip register, effecting a jump to the line after
the call.

Examples: ret

A more complete list of the instructions is located in Appendix B.

Page 174

Chapter 12.0 ◄ Functions

 12.7 Argument Transmission
Argument transmission refers to sending information (variables, etc.) to a function and
obtaining a result as appropriate for the specific function.

The standard terminology for transmitting values to a function is referred to as call-by-
value. The standard terminology for transmitting addresses to a function is referred to
as call-by-reference. This should be a familiar topic from a high-level language.

There are various ways to pass arguments to and/or from a function.

• Placing values in register

◦ Easiest, but has limitations (i.e., the number of registers).

◦ Used for first six integer arguments.

◦ Used for system calls.

• Globally defined variables

◦ Generally poor practice, potentially confusing, and will not work in many
cases.

◦ Occasionally useful in limited circumstances.

• Putting values and/or addresses on stack

◦ No specific limit to count of arguments that can be passed.

◦ Incurs higher run-time overhead.

In general, the calling routine is referred to as the caller and the routine being called is
referred to as the callee.

 12.8 Calling Convention
The function prologue is the code at the beginning of a function and the function
epilogue is the code at the end of a function. The operations performed by the prologue
and epilogue are generally specified by the standard calling convention and deal with
stack, registers, passed arguments (if any), and stack dynamic local variables (if any).

The general idea is that the program state (i.e., contents of specific registers and the
stack) are saved, the function executed, and then the state is restored. Of course, the
function will often require extensive use of the registers and the stack. The prologue
code helps save the state and the epilogue code restores the state.

Page 175

Chapter 12.0 ◄ Functions

 12.8.1 Parameter Passing
As noted, a combination of registers and the stack is used to pass parameters to and/or
from a function.

The first six integer arguments are passed in registers as follows:

Argument
Number

Argument Size

64-bits 32-bits 16-bits 8-bits

1 rdi edi di dil
2 rsi esi si sil
3 rdx edx dx dl
4 rcx ecx cx cl
5 r8 r8d r8w r8b
6 r9 r9d r9w r9b

The seventh and any additional arguments are passed on the stack. The standard calling
convention requires that, when passing arguments (values or addresses) on the stack, the
arguments should be pushed in reverse order. That is “someFunc (one, two,
three, four, five, six, seven, eight, nine)” would imply a push order
of: nine, eight, and then seven.

For floating-point arguments, the floating-point registers xmm0 to xmm7 are used in
that order for the first eight float arguments.

Additionally, when the function is completed, the calling routine is responsible for
clearing the arguments from the stack. Instead of doing a series of pop instructions, the
stack pointer, rsp, is adjusted as necessary to clear the arguments off the stack. Since
each argument is 8 bytes, the adjustment would be adding [(number of arguments) * 8]
to the rsp.

For value returning functions, the result is placed in the A register based on the size of
the value being returned.

Specifically, the values are returned as follows:

Page 176

Chapter 12.0 ◄ Functions

Return Value
Size

Location

byte al
word ax

double-word eax
quadword rax

floating-point xmm0

The rax register may be used in the function as needed as long as the return value is set
appropriately before returning.

 12.8.2 Register Usage
The standard calling convention specifies the usage of registers when making function
calls. Specifically, some registers are expected to be preserved across a function call.
That means that if a value is placed in a preserved register or saved register, and the
function must use that register, the original value must be preserved by placing it on the
stack, altered as needed, and then restored to its original value before returning to the
calling routine. This register preservation is typically performed in the prologue and the
restoration is typically performed in the epilogue.

The following table summarizes the register usage.

Register Usage
rax Return Value
rbx Callee Saved
rcx 4th Argument
rdx 3rd Argument
rsi 2nd Argument
rdi 1st Argument
rbp Callee Saved
rsp Stack Pointer
r8 5th Argument
r9 6th Argument

Page 177

Chapter 12.0 ◄ Functions

r10 Temporary
r11 Temporary
r12 Callee Saved
r13 Callee Saved
r14 Callee Saved
r15 Callee Saved

The temporary registers (rax, r10 and r11) and the argument registers (rdi, rsi, rdx,
rcx, r8, and r9) are not preserved across a function call. This means that any of these
registers may be used in the function without the need to preserve the original value.

Additionally, none of the floating-point registers are preserved across a function call.
Refer to Chapter 18 for more information regarding floating-point operations.

 12.8.3 Call Frame
The items on the stack as part of a function call are referred to as a call frame (also
referred to as an activation record or stack frame). Based on the standard calling
convention, the items on the stack, if any, will be in a specific general format.

The possible items in the call frame include:

• Return address (required).

• Preserved registers (if any).

• Passed arguments (if any).

• Stack dynamic local variables (if any).

Other items may be placed in the call frame such as static links for dynamically scoped
languages. Such topics are outside the scope of this text and will not be discussed here.

For some functions, a full call frame may not be required. For example, if the function:

• Is a leaf function (i.e., does not call another function).

• Passes its arguments only in registers (i.e., does not use the stack).

• Does not alter any of the saved registers.

• Does not require stack-based local variables.

This can occur for simpler, smaller leaf functions.

Page 178

Chapter 12.0 ◄ Functions

However, if any of these conditions is not true, a full call frame is required.

For more non-leaf or more complex functions, a more complete call frame is required.

The standard calling convention does not explicitly require use of the frame pointer
register, rbp. Compilers are allowed to optimize the call frame and not use the frame
pointer. To simplify and clarify accessing stack-based arguments (if any) and stack
dynamic local variables, this text will utilize the frame pointer register. This is similar
to how many other architectures use a frame pointer register.

As such, if there are any stack-based arguments or any local variables needed within a
function, the frame pointer register, rbp, should be pushed and then set pointing to
itself. As additional pushes and pops are performed (thus changing rsp), the rbp
register will remain unchanged. This allows the rbp register to be used as a reference to
access arguments passed on the stack (if any) or stack dynamic local variables (if any).

For example, assuming a function call has eight (8) arguments and assuming the
function uses rbx, r12, and r13 registers (and thus must be pushed), the call frame
would be as follows:

The stack-based arguments are accessed relative to the rbp. Each item push is a
quadword which uses 8 bytes. For example, [rbp+16] is the location of the first passed
argument (7th integer argument) and [rbp+24] is the location of the second passed
argument (8th integer argument).

Page 179

...
<8th Argument> ← rbp + 24
<7th Argument> ← rbp + 16

rip (return address)
rbp ← rbp
rbx
r12
r13 ← rsp
...

Illustration 24: Stack Frame Layout

Chapter 12.0 ◄ Functions

In addition, the call frame would contain the assigned locations of local variables (if
any). The section on local variables details the specifics regarding allocating and using
local variables.

 12.8.3.1 Red Zone

In the Linux standard calling convention, the first 128-bytes after the stack pointer, rsp,
are reserved. For example, extending the previous example, the call frame would be as
follows:

This red zone may be used by the function without any adjustment to the stack pointer.
The purpose is to allow compiler optimizations for the allocation of local variables.
This does not directly impact programs written directly in assembly language.

 12.9 Example, Statistical Function 1 (leaf)
This simple example will demonstrate calling a simple void function to find the sum and

Page 180

...
<8th Argument> ← rbp + 24
<7th Argument> ← rbp + 16

rip (return address)
rbp ← rbp
rbx
r10
r12 ← rsp

. . .
128 bytes

. . .
Red Zone

. . .

Illustration 25: Stack Frame Layout with Red Zone

Chapter 12.0 ◄ Functions

average of an array of numbers. The High-Level Language (HLL) call for C/C++ is as
follows:

stats1(arr, len, sum, ave);

As per the C/C++ convention, the array, arr, is call-by-reference and the length, len, is
call-by-value. The arguments for sum and ave are both call-by-reference (since there
are no values as yet). For this example, the array arr, sum, and ave variables are all
signed double-word integers. Of course, in context, the len must be unsigned.

 12.9.1 Caller
In this case, there are 4 arguments, and all arguments are passed in registers in
accordance with the standard calling convention. The assembly language code in the
calling routine for the call to the stats function would be as follows:

; stats1(arr, len, sum, ave);
mov rcx, ave ; 4th arg, addr of ave
mov rdx, sum ; 3rd arg, addr of sum
mov esi, dword [len] ; 2nd arg, value of len
mov rdi, arr ; 1st arg, addr of arr
call stats1

There is no specific required order for setting the argument registers. This example sets
them in reverse order in preparation for the next, extended example.

Note, the setting of the esi register also sets the upper-order double-word to zero, thus
ensuring the rsi register is set appropriately for this specific usage since length is
unsigned.

No return value is provided by this void routine. If the function was a value returning
function, the value returned would be in the A register (of appropriate size).

 12.9.2 Callee
The function being called, the callee, must perform the prologue and epilogue operations
(as specified by the standard calling convention) before and after the code to perform the
function goal. For this example, the function must perform the summation of values in
the array, compute the integer average, return the sum and average values.

The following code implements the stats1 example.

; Simple example function to find and return
; the sum and average of an array.

Page 181

Chapter 12.0 ◄ Functions

; HLL call:
; stats1(arr, len, sum, ave);
; -----
; Arguments:
; arr, address – rdi
; len, dword value – esi
; sum, address – rdx
; ave, address - rcx
global stats1
stats1:

push r12 ; prologue
mov r12, 0 ; counter/index
mov rax, 0 ; running sum

sumLoop:
add eax, dword [rdi+r12*4] ; sum += arr[i]
inc r12
cmp r12, rsi
jl sumLoop
mov dword [rdx], eax ; return sum
cdq
idiv esi ; compute average
mov dword [rcx], eax ; return ave
pop r12 ; epilogue
ret

The choice of the r12 register is arbitrary, however a 'saved register' was selected.

The call frame for this function would be as follows:

...

rip (return address)
r12 ← rsp
...

The minimal use of the stack helps reduce the function call run-time overhead.

Page 182

Chapter 12.0 ◄ Functions

 12.10 Example, Statistical Function2 (non-leaf)
This extended example will demonstrate calling a simple void function to find the
minimum, median, maximum, sum and average of an array of numbers.

The High-Level Language (HLL) call for C/C++ is as follows:
stats2(arr, len, min, med1, med2, max, sum, ave);

For this example, it is assumed that the array is sorted in ascending order. Additionally,
for this example, the median will be the middle value. For an even length list, there are
two middle values, med1 and med2, both of which are returned. For an odd length list,
the single middle value is returned in both med1 and med2.

As per the C/C++ convention, the array, arr, is call-by-reference and the length, len, is
call-by-value. The arguments for min, med1, med2, max, sum, and ave are all call-by-
reference (since there are no values as yet). For this example, the array arr, min, med1,
med2, max, sum, and ave variables are all signed double-word integers. Of course, in
context, the len must be unsigned.

 12.10.1 Caller
In this case, there are 8 arguments and only the first six can be passed in registers. The
last two arguments are passed on the stack. The assembly language code in the calling
routine for the call to the stats function would be as follows:

; stats2(arr, len, min, med1, med2, max, sum, ave);
push ave ; 8th arg, add of ave
push sum ; 7th arg, add of sum
mov r9, max ; 6th arg, add of max
mov r8, med2 ; 5th arg, add of med2
mov rcx, med1 ; 4th arg, add of med1
mov rdx, min ; 3rd arg, addr of min
mov esi, dword [len] ; 2nd arg, value of len
mov rdi, arr ; 1st arg, addr of arr
call stats2
add rsp, 16 ; clear passed arguments

The 7th and 8th arguments are passed on the stack and pushed in reverse order in
accordance with the standard calling convention. After the function is completed, the
arguments are cleared from the stack by adjusting the stack point register (rsp). Since
two arguments, 8 bytes each, were passed on the stack, 16 is added to the stack pointer.

Page 183

Chapter 12.0 ◄ Functions

Note, the setting of the esi register also sets the upper-order double-word to zero, thus
ensuring the rsi register is set appropriately for this specific usage since length is
unsigned.

No return value is provided by this void routine. If the function was a value returning
function, the value returned would be in the A register.

 12.10.2 Callee
The function being called, the callee, must perform the prologue and epilogue operations
(as specified by the standard calling convention). Of course, the function must perform
the summation of values in the array, find the minimum, medians, and maximum,
compute the average, return all the values.

When call-by-reference arguments are passed on the stack, two steps are required to
return the value.

• Get the address from the stack.

• Use that address to return the value.

A common error is to attempt to return a value to a stack-based location in a single step,
which will not change the referenced variable. For example, assuming the double-word
value to be returned is in the eax register and the 7th argument is call-by-reference and
where the eax value is to be returned, the appropriate code would be as follows:

mov r12, qword [rbp+16]
mov dword [r12], eax

These steps cannot be combined into a single step. The following code
mov dword [rbp+16], eax

Would overwrite the address passed on the stack and not change the reference variable.

The following code implements the stats2 example.

; Simple example function to find and return the minimum,
; maximum, sum, medians, and average of an array.
; -----
; HLL call:
; stats2(arr, len, min, med1, med2, max, sum, ave);
; Arguments:
; arr, address – rdi

Page 184

Chapter 12.0 ◄ Functions

; len, dword value – esi
; min, address – rdx
; med1, address - rcx
; med2, address - r8
; max, address - r9
; sum, address – stack (rbp+16)
; ave, address – stack (rbp+24)
global stats2
stats2:

push rbp ; prologue
mov rbp, rsp
push r12

; -----
; Get min and max.

mov eax, dword [rdi] ; get min
mov dword [rdx], eax ; return min
mov r12, rsi ; get len
dec r12 ; set len-1
mov eax, dword [rdi+r12*4] ; get max
mov dword [r9], eax ; return max

; -----
; Get medians

mov rax, rsi
mov rdx, 0
mov r12, 2
div r12 ; rax = length/2
cmp rdx, 0 ; even/odd length?
je evenLength
mov r12d, dword [rdi+rax*4] ; get arr[len/2]
mov dword [rcx], r12d ; return med1
mov dword [r8], r12d ; return med2
jmp medDone

evenLength:
mov r12d, dword [rdi+rax*4] ; get arr[len/2]

Page 185

Chapter 12.0 ◄ Functions

mov dword [r8], r12d ; return med2
dec rax
mov r12d, dword [rdi+rax*4] ; get arr[len/2-1]
mov dword [rcx], r12d ; return med1

medDone:
; -----
; Find sum

mov r12, 0 ; counter/index
mov rax, 0 ; running sum

sumLoop:
add eax, dword [rdi+r12*4] ; sum += arr[i]
inc r12
cmp r12, rsi
jl sumLoop
mov r12, qword [rbp+16] ; get sum addr
mov dword [r12], eax ; return sum

; -----
; Calculate average.

cdq
idiv rsi ; average = sum/len
mov r12, qword [rbp+24] ; get ave addr
mov dword [r12], eax ; return ave
pop r12 ; epilogue
pop rbp
ret

The choice of the registers is arbitrary with the bounds of the calling convention.

Page 186

Chapter 12.0 ◄ Functions

The call frame for this function would be as follows:

. . .
<8th Argument> ← rbp + 24
<7th Argument> ← rbp + 16

rip (return address)
rbp ← rbp
r12 ← rsp
. . .

In this example, the preserved registers, rbp and then r12, are pushed. When popped,
they must be popped in the exact reverse order r12 and then rbp in order to correctly
restore their original values.

 12.11 Stack-Based Local Variables
If local variables are required, they are allocated on the stack. By adjusting the rsp
register, additional memory is allocated on the stack for locals. As such, when the
function is completed, the memory used for the stack-based local variables is released
(and no longer uses memory).

Further expanding the previous example, if we assume all array values are between 0
and 99, and we wish to find the mode (number that occurs the most often), a single
double-word variable count and a one hundred (100) element local double-word array,
tmpArr[100] might be used.

As before, the frame register, rbp, is pushed on the stack and set pointing to itself. The
frame register plus an appropriate offset will allow accessing any arguments passed on
the stack. For example, rbp+16 is the location of the first stack-based argument (7th

integer argument).

After the frame register is pushed, an adjustment to the stack pointer register, rsp, is
made to allocate space for the local variables, a 100-element array in this example.
Since the count variable is a one double-word, 4-bytes is needed. The temporary array
is 100 double-word elements, 400 bytes is required. Thus, a total of 404 bytes is
required. Since the stack is implemented growing downward in memory, the 404 bytes
is subtracted from the stack pointer register.

Page 187

Chapter 12.0 ◄ Functions

Then any saved registers, rbx and r12 in this example, are pushed on the stack.

When leaving the function, the saved registers and then the locals must be cleared from
the stack. The preferred method of doing this is to pop the saved registers and then top
copy the rbp register into the rsp register, thus ensuring the rsp register points to the
correct place on the stack.

mov rsp, rbp

This is generally better than adding the offset back to the stack since allocated space
may be altered as needed without also requiring adjustments to the epilogue code.

It should be clear that variables allocated in this manner are uninitialized. Should the
function require the variables to be initialized, possibly to 0, such initializations must be
explicitly performed.

For this example, the call frame would be formatted as follows:

...
<value of len> ← rbp + 24
<addr of list> ← rbp + 16

rip (return address)
rbp ← rbp

 tmpArr[99]
 tmpArr[98]

. . .

. . .
 tmpArr[1]
 ← rbp - 400 = tmpArr[0]
 ← rbp - 404 = count

rbx
r12 ← rsp
. . .

The layout and order of the local variables within the allocated 404 bytes is arbitrary.

Page 188

Chapter 12.0 ◄ Functions

For example, the updated prologue code for this expanded example would be:
push rbp ; prologue
mov rbp, rsp
sub rsp, 404 ; allocate locals
push rbx
push r12

The local variables can be accessed relative to the frame pointer register, rbp. For
example, to initialize the count variable, now allocated to rbp-404, the following
instruction could be used:

mov dword [rbp-404], 0

To access the tmpArr, the starting address must be obtained which can be performed
with the lea instruction. For example,

 lea rbx, dword [rbp-400]
Which will set the appropriate stack address in the rbx register where rbx was chosen
arbitrarily. The dword qualifier in this example is not required, and may be misleading,
since addresses are always 64-bits (on a 64-bit architecture). Once set as above, the
tmpArr starting address in rbx is used in the usual manner.

For example, a small incomplete function code fragment demonstrating the accessing of
stack-based local variables is as follows:

; ---
; Example function
global expFunc
expFunc:

push rbp ; prologue
mov rbp, rsp
sub rsp, 404 ; allocate locals
push rbx
push r12

; -----
; Initialize count local variable to 0.

mov dword [rbp-404], 0
; -----

Page 189

Chapter 12.0 ◄ Functions

; Increment count variable (for example)...
inc dword [rbp-404] ; count++

; -----
; Loop to initialize tmpArr to all 0's.

lea rbx, dword [rbp-400] ; tmpArr addr
mov r12, 0 ; index

zeroLoop:
mov dword [rbx+r12*4], 0 ; tmpArr[index]=0
inc r12
cmp r12, 100
jl zeroLoop

; -----
; Done, restore all and return to calling routine.

pop r12 ; epilogue
pop rbx
mov rsp, rbp ; clear locals
pop rbp
ret

Note, this example function focuses only on how stack-based local variables are
accessed and does not perform anything useful.

 12.12 Summary
This section presents a brief summary of the standard calling convention requirements
which are as follows:

Caller Operations:

• The first six integer arguments are passed in registers

◦ rdi, rsi, rdx, rcx, r8, r9

• The 7th and on arguments are passed on the stack-based

◦ Pushes the arguments on the stack in reverse order (right to left, so that the
first stack argument specified in the function call is pushed last).

◦ Pushed arguments are passed as quadwords.

Page 190

Chapter 12.0 ◄ Functions

• The caller executes a call instruction to pass control to the function (callee).

• Stack-based arguments are cleared from the stack.

◦ add rsp, <argCount*8>
Callee Operations:

• Function Prologue

◦ If arguments are passed on the stack, the callee must save rbp to the stack
and move the value of rsp into rbp. This allows the callee to use rbp as a
frame pointer to access arguments on the stack in a uniform manner.

▪ The callee may then access its parameters relative to rbp. The quadword
at [rbp] holds the previous value of rbp as it was pushed; the next
quadword, at [rbp+8], holds the return address, pushed by the call. The
parameters start after that, at [rbp+16].

◦ If local variables are needed, the callee decreases rsp further to allocate
space on the stack for the local variables. The local variables are accessible
at negative offsets from rbp.

◦ The callee, if it wishes to return a value to the caller, should leave the value
in al, ax, eax, rax, depending on the size of the value being returned.

▪ A floating-point result is returned in xmm0.

◦ If altered, registers rbx, r12, r13, r14, r15 and rbp must be saved on the
stack.

• Function Execution

◦ The function code is executed.

• Function Epilogue

◦ Restores any pushed registers.

◦ If local variables were used, the callee restores rsp from rbp to clear the
stack-based local variables.

◦ The callee restores (i.e., pops) the previous value of rbp.

◦ The call returns via ret instruction (return).

Refer to the sample functions to see specific examples of the calling convention.

Page 191

Chapter 12.0 ◄ Functions

 12.13 Exercises
Below are some quiz questions and suggested projects based on this chapter.

 12.13.1 Quiz Questions
Below are some quiz questions based on this chapter.

1) What are the two main actions of a function call?

2) What are the two instructions that implement linkage?

3) When arguments are passed using values, it is referred to as?

4) When arguments are passed using addresses, it is referred to as?

5) If a function is called fifteen (15) times, how many times is the code placed in
memory by the assembler?

6) What happens during the execution of a call instruction (two things)?

7) According to the standard calling convention, as discussed in class, what is the
purpose of the initial pushes and final pops within most procedures?

8) If there are six (6) 64-bit integer arguments passed to a function, where
specifically should each of the arguments be passed?

9) If there are six (6) 32-bit integer arguments passed to a function, where
specifically should each of the arguments be passed?

10) What does it mean when a register is designated as temporary?

11) Name two temporary registers?

12) What is the name for the set of items placed on the stack as part of a function
call?

13) What does it mean when a function is referred to as a leaf function?

14) What is the purpose of the add rsp, <immediate> after the call
statement?

15) If three arguments are passed on the stack, what is the value for the
<immediate>?

16) If there are seven (7) arguments passed to a function, and the function itself
pushes the rbp, rbx, and r12 registers (in that order), what is the correct offset
of the stack-based argument when using the standard calling convention?

Page 192

Chapter 12.0 ◄ Functions

17) What, if any, is the limiting factor for how many times a function can be called?

18) If a function must return a result for the variable sum, how should the sum
variable be passed (call-by-reference or call-by-value)?

19) If there are eight (8) arguments passed to a function, and the function itself
pushes the rbp, rbx, and r12 registers (in that order), what are the correct offsets
for each of the two stack-based arguments (7th and 8th) when using the standard
calling convention?

20) What is the advantage of using stack dynamic local variables (as opposed to
using all global variables)?

 12.13.2 Suggested Projects
Below are some suggested projects based on this chapter.

1) Create a main and implement the stats1 example function. Use the debugger to
execute the program and display the final results. Create a debugger input file to
show the results.

2) Create a main and implement the stats2 example function. Use the debugger to
execute the program and display the final results. Create a debugger input file to
show the results.

3) Create a main program and a function that will sort a list of numbers in
ascending order. Use the following selection43 sort algorithm:

begin
for i = 0 to len-1

small = arr(i)
index = i
for j = i to len-1

if (arr(j) < small) then
small = arr(j)
index = j

end_if
end_for
arr(index) = arr(i)
arr(i) = small

end_for
end_begin

43 For more information, refer to: http://en.wikipedia.org/wiki/Selection_sort

Page 193

Chapter 12.0 ◄ Functions

The main should call the function on at least three different data sets. Use the
debugger to execute the program and display the final results. Create a debugger
input file to show the results.

4) Update the program from the previous question to add a stats function that finds
the minimum, median, maximum, sum, and average for the sorted list. The stats
function should be called after the sort function to make the minimum and
maximum easier to find. Use the debugger to execute the program and display
the final results. Create a debugger input file to show the results.

5) Update the program from the previous question to add an integer square root
function and a standard deviation function. To estimate the square root of a
number, use the following algorithm:

iSqrt est = iNumber

iSqrt est =
(iNumber

iSqrt est)+ iSqrt est

2

iterate 50 times

The formula for standard deviation is as follows:

iStandardDeviation = √ ∑
i=0

length−1

(list [i] − average)2

length

Note, perform the summation and division using integer values. Use the
debugger to execute the program and display the final results. Create a debugger
input file to show the results.

6) Convert the integer to ASCII macro from the previous chapter into a void
function. The function should convert a signed integer into a right-justified
string of a given length. This will require including any leading blanks, a sign
(“+” or “-”), the digits, and the NULL. The function should accept the value for
the integer and the address of where to place the NULL terminated string, and
the value of the maximum string length - in that order. Develop a main program
to call the function on a series of different integers. The main should include the
appropriate data declarations. Use the debugger to execute the program and
display the final results. Create a debugger input file to show the results.

Page 194

Chapter 12.0 ◄ Functions

7) Create a function to convert an ASCII string representing a number into an
integer. The function should read the string and perform appropriate error
checking. If there is an error, the function should return FALSE (a defined
constant set to 0). If the string is valid, the function should convert the string
into an integer. If the conversion is successful, the function should return TRUE
(a defined constant set to 1). Develop a main program to call the function on a
series of different integers. The main should include the appropriate data
declarations and applicable the constants. Use the debugger to execute the
program and display the final results. Create a debugger input file to show the
results.

Page 195

Chapter 12.0 ◄ Functions

Page 196

 13.0 System Services
There are many operations that an application program must use the operating system to
perform. Such operations include console output, keyboard input, file services (open,
read, write, close, etc.), obtaining the time or date, requesting memory allocation, and
many others.

Accessing system services is how the application requests that the operating system
perform some specific operation (on behalf of the process). More specifically, the
system call is the interface between an executing process and the operating system.

This section provides an explanation of how to use some basic system service calls.
More information on additional system service calls is located in Appendix C, System
Service Calls.

 13.1 Calling System Services
A system service call is logically similar to calling a function, where the function code
is located within the operating system. The function may require privileges to operate
which is why control must be transferred to the operating system.

When calling system services, arguments are placed in the standard argument registers.
System services do not typically use stack-based arguments. This limits the arguments
of a system services to six (6), which does not present a significant limitation.

To call a system service, the first step is to determine which system service is desired.
There are many system services (see Appendix C). The general process is that the
system service call code is placed in the rax register. The call code is a number that has
been assigned for the specific system service being requested. These are assigned as
part of the operating system and cannot be changed by application programs. To
simplify the process, this text will define a very small subset of system service call
codes to a set of constants. For this text, and the associated examples, the subset of

Page 197

Chapter
13

Linux is basically a simple operating
system, but you have to be a genius to
understand the simplicity.

Chapter 13.0 ◄ System Services

system call code constants are defined and shown in the source file to help provide
complete clarity for new assembly language programmers. For more experienced
programmers, typically developing larger or more complex programs, a complete list of
constants is in a file and included into the source file.

If any are needed, the arguments for system services are placed in the rdi, rsi, rdx, r10,
r8, and r9 registers (in that order). The following table shows the argument locations
which are consistent with the standard calling convention.

Register Usage
rax Call code (see table)
rdi 1st argument (if needed)
rsi 2nd argument (if needed)
rdx 3rd argument (if needed)
r10 4th argument (if needed)
r8 5th argument (if needed)
r9 6th argument (if needed)

This is very similar to the standard calling convention for function calls, however the 4th

argument, if needed, uses the r10 register.

Each system call will use a different number of arguments (from none up to 6).
However, the system service call code is always required.

After the call code and any arguments are set, the syscall instruction is executed. The
syscall instruction will pause the current process and transfer control to the operating
system which will attempt to perform the service specified in the rax register. When the
system service returns, the process will be resumed.

 13.2 Newline Character
As a refresher, in the context of output, a newline means move the cursor to the start of
the next line. In many languages, including C, it is often noted as “\n” as part of a
string. C++ uses endl in the context of a cout statement. For example, “Hello World 1”
and “Hello\nWorld 2” would be displayed as follows:

Hello World 1
Hello
World 2

Page 198

Chapter 13.0 ◄ System Services

Nothing is displayed for the newline, but the cursor is moved to the start of the next line
as shown.

In Unix/Linux systems, the linefeed, abbreviated LF with an ASCII value of 10 (or
0x0A), is used as the newline character. In Windows systems, the newline is carriage
return, abbreviated as CR with an ASCII value 13 (or 0x0D) followed by the LF. The
LF is used in the code examples in the text.

The reader may have seen instances where a text file is downloaded from a web page
and displayed using older versions Windows Notepad (pre-Windows 10) where all the
formatting is lost and it looks like the text is one very long line. This is typically due to
a Unix/Linux formatted file, which uses only LF's, being displayed with a Windows
utility that expects CR/LF pairs and does not display correctly when only LF's are
found. Other Windows software, like Notepad++ (open source text editor) will
recognize and handle the different newline formats and display correctly.

 13.3 Console Output
The system service to output characters to the console is the system write (SYS_write).
Like a high-level language characters are written to standard out (STDOUT) which is
the console. The STDOUT is the default file descriptor for the console. The file
descriptor is already opened and available for use in programs (assembly and high-level
languages).

The arguments for the write system service are as follows:

Register SYS_write
rax Call code = SYS_write (1)
rdi Output location, STDOUT (1)
rsi Address of characters to output
rdx Number of characters to output

Assuming the following declarations:
STDOUT equ 1 ; standard output
SYS_write equ 1 ; call code for write
msg db "Hello World"
msgLen dq 11

Page 199

Chapter 13.0 ◄ System Services

For example, to output “Hello World” (it’s traditional) to the console, the system write
(SYS_write) would be used. The code would be as follows:

mov rax, SYS_write
mov rdi, STDOUT
mov rsi, msg ; msg address
mov rdx, qword [msgLen] ; length value
syscall

Refer to the next section for a complete program to display the above message. It
should be noted that the operating system does not check if the string is valid.

 13.3.1 Example, Console Output
This example is a complete program to output some strings to the console. In this
example, one string includes new line and the other does not.

; Example program to demonstrate console output.
; This example will send some messages to the screen.
; **
section .data
; -----
; Define standard constants.
LF equ 10 ; line feed
NULL equ 0 ; end of string
TRUE equ 1
FALSE equ 0
EXIT_SUCCESS equ 0 ; success code
STDIN equ 0 ; standard input
STDOUT equ 1 ; standard output
STDERR equ 2 ; standard error
SYS_read equ 0 ; read
SYS_write equ 1 ; write
SYS_open equ 2 ; file open
SYS_close equ 3 ; file close
SYS_fork equ 57 ; fork

Page 200

Chapter 13.0 ◄ System Services

SYS_exit equ 60 ; terminate
SYS_creat equ 85 ; file open/create
SYS_time equ 201 ; get time
; -----
; Define some strings.
message1 db "Hello World.", LF, NULL
message2 db "Enter Answer: ", NULL
newLine db LF, NULL
;--
section .text
global _start
_start:
; -----
; Display first message.

mov rdi, message1
call printString

; -----
; Display second message and then newline

mov rdi, message2
call printString
mov rdi, newLine
call printString

; -----
; Example program done.
exampleDone:

mov rax, SYS_exit
mov rdi, EXIT_SUCCESS
syscall

; **
; Generic function to display a string to the screen.
; String must be NULL terminated.

Page 201

Chapter 13.0 ◄ System Services

; Algorithm:
; Count characters in string (excluding NULL)
; Use syscall to output characters

; Arguments:
; 1) address, string
; Returns:
; nothing
global printString
printString:

push rbx
; -----
; Count characters in string.

mov rbx, rdi
mov rdx, 0

strCountLoop:
cmp byte [rbx], NULL
je strCountDone
inc rdx
inc rbx
jmp strCountLoop

strCountDone:
cmp rdx, 0
je prtDone

; -----
; Call OS to output string.

mov rax, SYS_write ; system code for write()
mov rsi, rdi ; address of chars to write
mov rdi, STDOUT ; standard out

; RDX=count to write, set above
syscall ; system call

; -----
; String printed, return to calling routine.
prtDone:

Page 202

Chapter 13.0 ◄ System Services

pop rbx
ret

The output would be as follows:
Hello World.
Enter Answer:_

The newline (LF) was provided as part of the first string (message1) thus placing the
cursor on the start of the next line. The second message would leave the cursor on the
same line which would be appropriate for reading input from the user (which is not part
of this example). A final newline is printed since no actual input is obtained in this
example.

The additional, unused constants are included for reference.

 13.4 Console Input
The system service to read characters from the console is the system read (SYS_read).
Like a high-level language, for the console, characters are read from standard input
(STDIN). The STDIN is the default file descriptor for reading characters from the
keyboard. The file descriptor is already opened and available for use in program
(assembly and high-level languages).

Reading characters interactively from the keyboard presents an additional complication.
When using the system service to read from the keyboard, much like the write system
service, the number of characters to read is required. Of course, we will need to declare
an appropriate amount of space to store the characters being read. If we request 10
characters to read and the user types more than 10, the additional characters will be lost,
which is not a significant problem. If the user types less than 10 characters, for example
5 characters, all five characters will be read plus the newline (LF) for a total of six
characters.

A problem arises if input is redirected from a file. If we request 10 characters, and there
are 5 characters on the first line and more on the second line, we will get the six
characters from the first line (5 characters plus the newline) and the first four characters
from the next line for the total of 10. This is undesirable.

To address this, for interactively reading input, we will read one character at a time until
a LF (the Enter key) is read. Each character will be read and then stored, one at a time,
in an appropriately sized array.

Page 203

Chapter 13.0 ◄ System Services

The arguments for the read system service are as follows:

Register SYS_read
rax Call code = SYS_read (0)
rdi Input location, STDIN (0)
rsi Address of where to store characters read
rdx Number of characters to read

Assuming the following declarations:
STDIN equ 0 ; standard input
SYS_read equ 0 ; call code for read
inChar db 0

For example, to read a single character from the keyboard, the system read (SYS_read)
would be used. The code would be as follows:

mov rax, SYS_read
mov rdi, STDIN
mov rsi, inChar ; msg address
mov rdx, 1 ; read count
syscall

Refer to the next section for a complete program to read characters from the keyboard.

 13.4.1 Example, Console Input
The example is a complete program to read a line of 50 characters from the keyboard.
Since space for the newline (LF) along with a final NULL termination is included, an
input array allowing 52 bytes would be required.

This example will read up to 50 characters from the user and then echo the input back to
the console to verify that the input was read correctly.

; Example program to demonstrate console output.
; This example will send some messages to the screen.
; **
section .data

Page 204

Chapter 13.0 ◄ System Services

; -----
; Define standard constants.
LF equ 10 ; line feed
NULL equ 0 ; end of string
TRUE equ 1
FALSE equ 0
EXIT_SUCCESS equ 0 ; success code
STDIN equ 0 ; standard input
STDOUT equ 1 ; standard output
STDERR equ 2 ; standard error
SYS_read equ 0 ; read
SYS_write equ 1 ; write
SYS_open equ 2 ; file open
SYS_close equ 3 ; file close
SYS_fork equ 57 ; fork
SYS_exit equ 60 ; terminate
SYS_creat equ 85 ; file open/create
SYS_time equ 201 ; get time
; -----
; Define some strings.
STRLEN equ 50
pmpt db "Enter Text: ", NULL
newLine db LF, NULL
section .bss
chr resb 1
inLine resb STRLEN+2 ; total of 52
;--
section .text
global _start
_start:

Page 205

Chapter 13.0 ◄ System Services

; -----
; Display prompt.

mov rdi, pmpt
call printString

; -----
; Read characters from user (one at a time)

mov rbx, inLine ; inLine addr
mov r12, 0 ; char count

readCharacters:
mov rax, SYS_read ; system code for read
mov rdi, STDIN ; standard in
lea rsi, byte [chr] ; address of chr
mov rdx, 1 ; count (how many to read)
syscall ; do syscall
mov al, byte [chr] ; get character just read
cmp al, LF ; if linefeed, input done
je readDone
inc r12 ; count++
cmp r12, STRLEN ; if # chars ≥ STRLEN
jae readCharacters ; stop placing in buffer
mov byte [rbx], al ; inLine[i] = chr
inc rbx ; update tmpStr addr
jmp readCharacters

readDone:
mov byte [rbx], NULL ; add NULL termination

; -----
; Output the line to verify successful read

mov rdi, inLine
call printString

; -----
; Example done.

Page 206

Chapter 13.0 ◄ System Services

exampleDone:
mov rax, SYS_exit
mov rdi, EXIT_SUCCESS
syscall

; **
; Generic procedure to display a string to the screen.
; String must be NULL terminated.
; Algorithm:
; Count characters in string (excluding NULL)
; Use syscall to output characters
; Arguments:
; 1) address, string
; Returns:
; nothing
global printString
printString:

push rbx
; -----
; Count characters in string.

mov rbx, rdi
mov rdx, 0

strCountLoop:
cmp byte [rbx], NULL
je strCountDone
inc rdx
inc rbx
jmp strCountLoop

strCountDone:
cmp rdx, 0
je prtDone

; -----
; Call OS to output string.

mov rax, SYS_write ; system code for write()
mov rsi, rdi ; address of char's to write

Page 207

Chapter 13.0 ◄ System Services

mov rdi, STDOUT ; standard out
; RDX=count to write, set above

syscall ; system call
; -----
; String printed, return to calling routine.
prtDone:

pop rbx
ret

If we were to completely stop reading at 50 (STRLEN) characters and the user enters
more characters, the characters might cause input errors for successive read operations.
To address any extra characters the user might enter, the extra characters are read from
the keyboard but not placed in the input buffer (inLine above). This ensures that the
extra input is removed from the input stream and but does not overrun the array.

The additional, unused constants are included for reference.

 13.5 File Open Operations
In order to perform file operations such as read and write, the file must first be opened.
There are two file open operations, open and open/create. Each of the two open
operations are explained in the following sections.

After the file is opened, in order to perform file read or write operations the operating
system needs detailed information about the file, including the complete status and
current read/write location. This is necessary to ensure that read or write operations
pick up where they left off (from last time).

If the file open operation fails, an error code will be returned. If the file open operation
succeeds, a file descriptor is returned. This applies to both high-level languages and
assembly code.

The file descriptor is used by the operating system to access the complete information
about the file. The complete set of information about an open file is stored in an
operating system data structure named File Control Block (FCB). In essence, the file
descriptor is used by the operating system to reference the correct FCB. It is the
programmer's responsibility to ensure that the file descriptor is stored and used
correctly.

Page 208

Chapter 13.0 ◄ System Services

 13.5.1 File Open
The file open requires that the file exists in order to be opened. If the file does not exist,
it is an error.

The file open operation also requires the parameter flag to specify the access mode. The
access mode must include one of the following:

• Read-Only Access → O_RDONLY

• Write-Only Access → O_WRONLY

• Read/Write Access → O_RDWR

One of these access modes must be used. Additional access modes may be used by
OR'ing with one of these. This might include modes such as append mode (which is not
addressed in this text). Refer to Appendix C, System Services for additional
information regarding the file access modes.

The arguments for the file open system service are as follows:

Register SYS_open
rax Call code = SYS_open (2)
rdi Address of NULL terminated file name string
rsi File access mode flag

Assuming the following declarations:
SYS_open equ 2 ; file open
O_RDONLY equ 000000q ; read only
O_WRONLY equ 000001q ; write only
O_RDWR equ 000002q ; read and write

It should be noted that the constants are defined in octal or base 8 (as specified with the
q suffix). This matches how Linux file permission are sometimes specified.

After the system call, the rax register will contain the return value. If the file open
operation fails, rax will contain a negative value (i.e., < 0). The specific negative value
provides an indication of the type of error encountered. Refer to Appendix C, System
Services for additional information on error codes. Typical errors might include invalid
file descriptor, file not found, or file permissions error.

Page 209

Chapter 13.0 ◄ System Services

If the file open operation succeeds, rax contains the file descriptor. The file descriptor
will be required for further file operations and should be saved.

Refer to the section on Example File Read for a complete example that opens a file.

 13.5.2 File Open/Create
A file open/create operation will create a file. If the file does not exist, a new file will
be created. If the file already exists, it will be erased and a new file created. Thus, the
previous contents of the file will be lost.

A file access mode must be specified. Since the file is being created, the access mode
must include the file permissions that will be set when the file is created. This would
include specifying read, write, and/or execute permissions for the user, group, or world
as is typical for Linux file permissions. The only permissions addressed in this example
are for the user or owner of the file. As such, other users (i.e., using other accounts) will
not be able to access the file our program creates. Refer to Appendix C, System
Services for additional information regarding the file access modes.

The arguments for the file open/create system service are as follows:

Register SYS_creat
rax Call code = SYS_creat (85)
rdi Address of NULL terminated file name string
rsi File access mode flag

Assuming the following declarations:
SYS_creat equ 85 ; file open
O_CREAT equ 0x40
O_TRUNC equ 0x200
O_APPEND equ 0x400
S_IRUSR equ 00400q ; owner, read permission
S_IWUSR equ 00200q ; owner, write permission
S_IXUSR equ 00100q ; owner, execute permission

The file status flags “S_IRUSR | S_IWUSR” would allow simultaneous read and write,
which is typical. The “|” is a logical OR operation, thus combining the selections.

Page 210

Chapter 13.0 ◄ System Services

If the file open/create operation does not succeed, a negative value is returned in the rax
register. If file open/create operation succeeds, a file descriptor is returned. The file
descriptor is used for all subsequent file operations.

Refer to the section on Example File Write for a complete example file open/create.

 13.6 File Read
A file must be opened with the appropriate file access flags before it can be read.

The arguments for the file read system service are as follows:

Register SYS_read
rax Call code = SYS_read (0)
rdi File descriptor (of open file)
rsi Address of where to place characters read
rdx Count of characters to read

Assuming the following declarations:
SYS_read equ 0 ; file read

If the file read operation does not succeed, a negative value is returned in the rax
register. If the file read operation succeeds, the number of characters actually read is
returned.

Refer to the next section on example file read for a complete file read example.

 13.7 File Write
The arguments for the file write system service are as follows:

Register SYS_write
rax Call code = SYS_write (1)
rdi File descriptor (of open file)
rsi Address of characters to write
rdx Count of characters to write

Page 211

Chapter 13.0 ◄ System Services

Assuming the following declarations:
SYS_write equ 1 ; file write

If the file write operation does not succeed, a negative value is returned in the rax
register. If the file write operation does succeed, the number of characters actually
written is returned.

Refer to the section on Example File Read for a compete file write example.

 13.8 File Operations Examples
This section contains some simple example programs to demonstrate very basic file I/O
operations. The more complex issues regarding file I/O buffering are addressed in a
subsequent chapter.

 13.8.1 Example, File Write
This example program writes a short message to a file. The file created contains a
simple message, a URL in this example. The file name and message to be written to the
file are hard-coded. This helps simplify the example, but is not realistic.

Since the open/create service is used, the file will be created (even if an old version must
be overwritten).

; Example program to demonstrate file I/O. This example
; will open/create a file, write some information to the
; file, and close the file. Note, the file name and
; write message are hard-coded for the example.
section .data
; -----
; Define standard constants.
LF equ 10 ; line feed
NULL equ 0 ; end of string
TRUE equ 1
FALSE equ 0
EXIT_SUCCESS equ 0 ; success code
STDIN equ 0 ; standard input
STDOUT equ 1 ; standard output

Page 212

Chapter 13.0 ◄ System Services

STDERR equ 2 ; standard error
SYS_read equ 0 ; read
SYS_write equ 1 ; write
SYS_open equ 2 ; file open
SYS_close equ 3 ; file close
SYS_fork equ 57 ; fork
SYS_exit equ 60 ; terminate
SYS_creat equ 85 ; file open/create
SYS_time equ 201 ; get time
O_CREAT equ 0x40
O_TRUNC equ 0x200
O_APPEND equ 0x400
O_RDONLY equ 000000q ; read only
O_WRONLY equ 000001q ; write only
O_RDWR equ 000002q ; read and write
S_IRUSR equ 00400q
S_IWUSR equ 00200q
S_IXUSR equ 00100q
; -----
; Variables for main.
newLine db LF, NULL
header db LF, "File Write Example."

db LF, LF, NULL
fileName db "url.txt", NULL
url db "http://www.google.com"

db LF, NULL
len dq $-url-1
writeDone db "Write Completed.", LF, NULL
fileDesc dq 0
errMsgOpen db "Error opening file.", LF, NULL
errMsgWrite db "Error writing to file.", LF, NULL
;--
section .text
global _start
_start:

Page 213

Chapter 13.0 ◄ System Services

; -----
; Display header line...

mov rdi, header
call printString

; -----
; Attempt to open file.
; Use system service for file open

; System Service - Open/Create
; rax = SYS_creat (file open/create)
; rdi = address of file name string
; rsi = attributes (i.e., read only, etc.)
; Returns:
; if error -> eax < 0
; if success -> eax = file descriptor number
; The file descriptor points to the File Control
; Block (FCB). The FCB is maintained by the OS.
; The file descriptor is used for all subsequent
; file operations (read, write, close).
openInputFile:

mov rax, SYS_creat ; file open/create
mov rdi, fileName ; file name string
mov rsi, S_IRUSR | S_IWUSR ; allow read/write
syscall ; call the kernel
cmp rax, 0 ; check for success
jl errorOnOpen
mov qword [fileDesc], rax ; save descriptor

; -----
; Write to file.
; In this example, the characters to write are in a
; predefined string containing a URL.
; System Service - write
; rax = SYS_write
; rdi = file descriptor
; rsi = address of characters to write

Page 214

Chapter 13.0 ◄ System Services

; rdx = count of characters to write
; Returns:
; if error -> rax < 0
; if success -> rax = count of characters actually read

mov rax, SYS_write
mov rdi, qword [fileDesc]
mov rsi, url
mov rdx, qword [len]
syscall
cmp rax, 0
jl errorOnWrite
mov rdi, writeDone
call printString

; -----
; Close the file.
; System Service - close
; rax = SYS_close
; rdi = file descriptor

mov rax, SYS_close
mov rdi, qword [fileDesc]
syscall
jmp exampleDone

; -----
; Error on open.
; note, rax contains an error code which is not used
; for this example.
errorOnOpen:

mov rdi, errMsgOpen
call printString
jmp exampleDone

; -----
; Error on write.
; note, rax contains an error code which, not used here

Page 215

Chapter 13.0 ◄ System Services

errorOnWrite:
mov rdi, errMsgWrite
call printString
jmp exampleDone

; -----
; Example program done.
exampleDone:

mov rax, SYS_exit
mov rdi, EXIT_SUCCESS
syscall

; **
; Generic function to display a string to the screen.
; String must be NULL terminated.
; Algorithm:
; Count characters in string (excluding NULL)
; Use syscall to output characters
; Arguments:
; 1) address, string
; Returns: nothing
global printString
printString:

push rbp
mov rbp, rsp
push rbx

; Count characters in string.
mov rbx, rdi
mov rdx, 0

strCountLoop:
cmp byte [rbx], NULL
je strCountDone
inc rdx
inc rbx
jmp strCountLoop

Page 216

Chapter 13.0 ◄ System Services

strCountDone:
cmp rdx, 0
je prtDone

; Call OS to output string.
mov rax, SYS_write ; code for write()
mov rsi, rdi ; addr of characters
mov rdi, STDOUT ; file descriptor

; count set above
syscall ; system call

; String printed, return to calling routine.
prtDone:

pop rbx
pop rbp
ret

; ***

This example creates the file which is read by the next example.

 13.8.2 Example, File Read
This example will read a file. The file to be read contains a simple message, the URL
from the previous example. The file name is hard-coded which helps simplify the
example, but is not realistic. The file name used matches the previous file write
example. If this example program is executed prior to the write example program being
executed, it will generate an error since the file will not be found. After the file write
example program is executed, this file read example program will read the file and
display the contents.
; Example program to demonstrate file I/O.
; This example will open/create a file, write some
; information to the file, and close the file.
; Note, the file name is hard-coded for this example.
; This example program will open a file, read the
; contents, and write the contents to the screen.
; This routine also provides some very simple examples
; regarding handling various errors on system services.

Page 217

Chapter 13.0 ◄ System Services

; ---
section .data
; -----
; Define standard constants.
LF equ 10 ; line feed
NULL equ 0 ; end of string
TRUE equ 1
FALSE equ 0
EXIT_SUCCESS equ 0 ; success code
STDIN equ 0 ; standard input
STDOUT equ 1 ; standard output
STDERR equ 2 ; standard error
SYS_read equ 0 ; read
SYS_write equ 1 ; write
SYS_open equ 2 ; file open
SYS_close equ 3 ; file close
SYS_fork equ 57 ; fork
SYS_exit equ 60 ; terminate
SYS_creat equ 85 ; file open/create
SYS_time equ 201 ; get time
O_CREAT equ 0x40
O_TRUNC equ 0x200
O_APPEND equ 0x400
O_RDONLY equ 000000q ; read only
O_WRONLY equ 000001q ; write only
O_RDWR equ 000002q ; read and write
S_IRUSR equ 00400q
S_IWUSR equ 00200q
S_IXUSR equ 00100q
; -----
; Variables/constants for main.
BUFF_SIZE equ 255
newLine db LF, NULL

Page 218

Chapter 13.0 ◄ System Services

header db LF, "File Read Example."
db LF, LF, NULL

fileName db "url.txt", NULL
fileDesc dq 0
errMsgOpen db "Error opening the file.", LF, NULL
errMsgRead db "Error reading from the file.", LF, NULL
; ---
section .bss
readBuffer resb BUFF_SIZE
; ---
section .text
global _start
_start:
; -----
; Display header line...

mov rdi, header
call printString

; -----
; Attempt to open file - Use system service for file open
; System Service - Open
; rax = SYS_open
; rdi = address of file name string
; rsi = attributes (i.e., read only, etc.)
; Returns:
; if error -> eax < 0
; if success -> eax = file descriptor number
; The file descriptor points to the File Control
; Block (FCB). The FCB is maintained by the OS.
; The file descriptor is used for all subsequent file
; operations (read, write, close).

Page 219

Chapter 13.0 ◄ System Services

openInputFile:
mov rax, SYS_open ; file open
mov rdi, fileName ; file name string
mov rsi, O_RDONLY ; read only access
syscall ; call the kernel
cmp rax, 0 ; check for success
jl errorOnOpen
mov qword [fileDesc], rax ; save descriptor

; -----
; Read from file.
; For this example, we know that the file has only 1 line.
; System Service - Read
; rax = SYS_read
; rdi = file descriptor
; rsi = address of where to place data
; rdx = count of characters to read
; Returns:
; if error -> rax < 0
; if success -> rax = count of characters actually read

mov rax, SYS_read
mov rdi, qword [fileDesc]
mov rsi, readBuffer
mov rdx, BUFF_SIZE
syscall
cmp rax, 0
jl errorOnRead

; -----
; Print the buffer.
; add the NULL for the print string

mov rsi, readBuffer
mov byte [rsi+rax], NULL
mov rdi, readBuffer
call printString

Page 220

Chapter 13.0 ◄ System Services

printNewLine
; -----
; Close the file.
; System Service - close
; rax = SYS_close
; rdi = file descriptor

mov rax, SYS_close
mov rdi, qword [fileDesc]
syscall
jmp exampleDone

; -----
; Error on open.
; note, eax contains an error code which is not used
; for this example.
errorOnOpen:

mov rdi, errMsgOpen
call printString
jmp exampleDone

; -----
; Error on read.
; note, eax contains an error code which is not used
; for this example.
errorOnRead:

mov rdi, errMsgRead
call printString
jmp exampleDone

; -----
; Example program done.
exampleDone:

mov rax, SYS_exit
mov rdi, EXIT_SUCCESS
syscall

Page 221

Chapter 13.0 ◄ System Services

; **
; Generic procedure to display a string to the screen.
; String must be NULL terminated.
; Algorithm:
; Count characters in string (excluding NULL)
; Use syscall to output characters
; Arguments:
; 1) address, string
; Returns:
; nothing
global printString
printString:

push rbp
mov rbp, rsp
push rbx

; -----
; Count characters in string.

mov rbx, rdi
mov rdx, 0

strCountLoop:
cmp byte [rbx], NULL
je strCountDone
inc rdx
inc rbx
jmp strCountLoop

strCountDone:
cmp rdx, 0
je prtDone

; -----
; Call OS to output string.

mov rax, SYS_write ; code for write()
mov rsi, rdi ; addr of characters
mov rdi, STDOUT ; file descriptor

; count set above
syscall ; system call

Page 222

Chapter 13.0 ◄ System Services

; -----
; String printed, return to calling routine.
prtDone:

pop rbx
pop rbp
ret

The printString() function is the exact same in both examples and is only repeated to
allow each program to be assembled and executed independently.

 13.9 Exercises
Below are some quiz questions and suggested projects based on this chapter.

 13.9.1 Quiz Questions
Below are some quiz questions based on this chapter.

1) When using a system service, where is the call code placed?

2) Where is the code located when the syscall instruction is executed (in the
user program or in the operating system)?

3) What is the call code and required arguments for a system service call to perform
console output?

4) Why was only one character read for interactive keyboard input?

5) What is returned for a successful file open system service call?

6) What is returned for an unsuccessful file open system service call?

7) If a system service call requires six (6) arguments, where specifically should
they be passed?

 13.9.2 Suggested Projects
Below are some suggested projects based on this chapter.

1) Implement the printString() example void function and a simple main to test of a
series of strings. Use the debugger to execute the program and display the final
results. Execute the program without the debugger and verify the appropriate
output is displayed to the console.

Page 223

Chapter 13.0 ◄ System Services

2) Convert the example program to read input from keyboard into a readString()
function. The function should accept arguments for the string address and
maximum string length (in that order). The maximum length should include
space for the NULL (an extra byte), which means the function must not allow
more than the maximum minus one characters to be stored in the string. If
additional characters are entered by the user, they should be cleared from the
input stream, but not stored. The function should not include the newline in the
returned string. The function should return the number of characters in the string
not including the NULL. The printString() function from the previous problem
should be used unchanged. When done, create an appropriate main to test the
function. Use the debugger as necessary to debug the program. When working
correctly, execute the program from the command line which will display the
final results to the console.

3) Based on the file write example, create a value returning fileWrite() function to
write a password to a file. The function should accept arguments for the address
of the file name and the address of the NULL terminated password string. The
file should be created, opened, the password string written to the file, and the file
closed. The function should return SUCCESS if the operations worked correctly
or NOSUCCESS if there is a problem. Problems might include not being able to
create the file or not being able to write to the file. Create an appropriate main to
test the function. Use the debugger as necessary to debug the program. When
working correctly, execute the program from the command line which will
display the final results to the console.

4) Based on the file read example, create a value returning fileRead() function to
read a password from a file. The function should accept arguments for the
address of file name, the address of where to store the password string, the
maximum length of the password string, and the address of where to store the
password length. The function should open the file, read a string representing a
password, close the file, and return the number of characters in the password.
The maximum length should include space for the NULL, which means the
function read must not store more than the maximum minus one characters in the
string. The function should return SUCCESS if the operations worked correctly
or NOSUCCESS if there is a problem. Problems might include the file not
existing or other read errors. Create an appropriate main to test the function.
Use the debugger as necessary to debug the program. When working correctly,
execute the program from the command line which will display the final results
to the console.

Page 224

 14.0 Multiple Source Files
As a program grows in size and complexity, it is common that different parts of the
program are stored in different source files. This allows a programmer to ensure the
source files do not become unreasonably large and would also allow multiple
programmers to more easily work on different parts of the program.

The function calls, even those written by different programmers, will work together
correctly due to the standard calling convention as outlined in Chapter 12, Functions.
This is even true when interfacing with a high-level language.

This chapter will present a simple assembly language example to demonstrate how to
create and use source code in multiple files. In addition, an example of how to interface
with a C/C++ source file is provided.

 14.1 Extern Statement
If a function is called from a source file and the function code is not located in the
current source file, the assembler will generate an error. The same applies to variables
accessed that are not located in the current file. In order to inform the assembler that the
function code or variables are in another file, the extern statement is used. The syntax
is as follows:

extern <symbolName>

The symbol name would be the name of the function or a variable that is located in a
different source file. In general, using global variables accessed across multiple files is
considered poor programming practice and should be used sparingly (if at all). Data is
typically passed between functions as arguments for the function call.

The examples in the text focus on using external functions only with no globally
declared variables.

Page 225

Chapter
14

My new computer is so fast, it executes an
infinite loop in 6 seconds.

Chapter 14.0 ◄ Multiple Source Files

 14.2 Example, Sum and Average
The following is a simple example of a main that calls an assembly language function,
stats(), to compute the integer sum and integer average for a list of signed integers. The
main and the function are in different source files and are presented as an example of
how multiple source files are used. The example itself is really too small to actually
require multiple source files.

 14.2.1 Assembly Main
The main is as follows:

; Simple example to call an external function.
; --
; Data section
section .data
; -----
; Define standard constants
LF equ 10 ; line feed
NULL equ 0 ; end of string
TRUE equ 1
FALSE equ 0
EXIT_SUCCESS equ 0 ; success code
SYS_exit equ 60 ; terminate
; -----
; Declare the data
lst1 dd 1, -2, 3, -4, 5

dd 7, 9, 11
len1 dd 8
lst2 dd 2, -3, 4, -5, 6

dd -7, 10, 12, 14, 16
len2 dd 10

Page 226

Chapter 14.0 ◄ Multiple Source Files

section .bss
sum1 resd 1
ave1 resd 1
sum2 resd 1
ave2 resd 1
; --
extern stats
section .text
global _start
_start:
; ----
; Call the function
; HLL Call: stats(lst, len, &sum, &ave);

mov rdi, lst1 ; data set 1
mov esi, dword [len1]
mov rdx, sum1
mov rcx, ave1
call stats
mov rdi, lst2 ; data set 2
mov esi, dword [len2]
mov rdx, sum2
mov rcx, ave2
call stats

; -----
; Example program done
exampleDone:

mov rax, SYS_exit
mov rdi, EXIT_SUCCESS
syscall

The above main can be assembled with the same assemble command as described in
Chapter 5, Tool chain. The extern statement will ensure that the assembler does not
generate errors.

Page 227

Chapter 14.0 ◄ Multiple Source Files

 14.2.2 Function Source
The function, in a different source file is as follows:
; Simple example void function.
; **
; Data declarations
; Note, none needed for this example.
; If needed, they would be declared here as always.
section .data
; **
section .text
; --
; Function to find integer sum and integer average
; for a passed list of signed integers.
; Call:
; stats(lst, len, &sum, &ave);
; Arguments Passed:
; 1) rdi - address of array
; 2) rsi - length of passed array
; 3) rdx - address of variable for sum
; 4) rcx - address of variable for average
; Returns:
; sum of integers (via reference)
; average of integers (via reference)
global stats
stats:

push r12
; -----
; Find and return sum.

mov r11, 0 ; i=0
mov r12d, 0 ; sum=0

Page 228

Chapter 14.0 ◄ Multiple Source Files

sumLoop:
mov eax, dword [rdi+r11*4] ; get lst[i]
add r12d, eax ; update sum
inc r11 ; i++
cmp r11, rsi
jb sumLoop
mov dword [rdx], r12d ; return sum

; -----
; Find and return average.

mov eax, r12d
cdq
idiv esi
mov dword [rcx], eax ; return average

; -----
; Done, return to calling function.

pop r12
ret

The above source file can be assembled with the same assemble command as described
in Chapter 5, Tool chain. No extern statement is required since no external functions
are called.

 14.2.3 Assemble and Link
Assuming the main source file is named main.asm and the functions source file is
named stats.asm, the following command will perform the assemble and link.

yasm -g dwarf2 -f elf64 main.asm -l main.lst
yasm -g dwarf2 -f elf64 stats.asm -l stats.lst
ld -g -o main main.o stats.o

The files names can be changed as desired.

As usual, the debugger is started with the ddd <executable> command. It would be
appropriate to note that using the debugger step command will step into the function,
including showing the function source code (even if the source is in a different file).

Page 229

Chapter 14.0 ◄ Multiple Source Files

The debugger next command will execute the entire function and not show the source.
If the function is working, the next command would be most useful. In order to debug
the function, the step command would be most useful.

If the “-g” option is omitted, the debugger will not be able to display the source code.

 14.3 Interfacing with a High-Level Language
This section provides information on how a high-level language can call an assembly
language function and how an assembly language function can call a high-level
language function. This chapter presents examples for both.

In brief, the answer of how this is accomplished is through the standard calling
convention. As such, no additional or special code is needed when interfacing with a
high-level language. The compiler or assembler will need to be informed about the
external routines in order to avoid error messages about not being able to find the source
code for the non-local routines.

The general process for linking for multiple files was described in Chapter 5, Tool
Chain. The process of using multiple source files was described in Chapter 14, Multiple
Source Files. It does not matter if the object files are from a high-level language or from
an assembly language source.

 14.3.1 Example, C++ Main / Assembly Function
When calling any functions that are in a separate source file, the compiler must be
informed that the function or functions source code are external to the current source
file. This is performed with an extern statement in C or C++. Other languages will
have a similar syntax. For a high-level language, the extern statement will include the
function prototype which will allow the compiler to verify the function parameters and
associated types.

The following is a simple example using a C++ main with an assembly language
function.

#include <iostream>
using namespace std;
extern "C" void stats(int[], int, int *, int *);
int main()
{

int lst[] = {1, -2, 3, -4, 5, 7, 9, 11};

Page 230

Chapter 14.0 ◄ Multiple Source Files

int len = 8;
int sum, ave;
stats(lst, len, &sum, &ave);
cout << "Stats:" << endl;
cout << " Sum = " << sum << endl;
cout << " Ave = " << ave << endl;
return 0;

}

At this point, the compiler does not know the external function is written in assembly
(nor does it matter).

The C compiler is pre-installed on Ubuntu. However, the C++ compiler is not installed
by default.

A C version of the same program is also presented for completeness.

#include<stdio.h>
extern void stats(int[], int, int *, int *);
int main()
{

int lst[] = {1, -2, 3, -4, 5, 7, 9, 11};
int len = 8;
int sum, ave;
stats(lst, len, &sum, &ave);
printf ("Stats:\n");
printf (" Sum = %d \n", sum);
printf (" Ave = %d \n", ave);
return 0;

}

The stats() function referenced here should be used unchanged from the previous
example.

Page 231

Chapter 14.0 ◄ Multiple Source Files

 14.3.2 Compile, Assemble, and Link
As noted in the Functions Chapter, the C++ compiler should be used. For example,
assuming that the C++ main is named main.cpp, and the assembly source file is named
stats.asm, the commands to compile, assemble, link, and execute as follows:

g++ -g -Wall -c main.cpp
yasm -g dwarf2 -f elf64 stats.asm -l stats.lst
g++ -g -o main main.o stats.o

Note, Ubuntu 18 and above will require the no-pie option on the g++ as shown:
g++ -g -no-pie -o main main.o stats.o

The file names can be changed as desired. Upon execution, the output would be as
follows:

./main
Stats:
 Sum = 30
 Ave = 3

If a C main is used, and assuming that the C main is named main.c, and the assembly
source file is named stats.asm, the commands to compile, assemble, link, and execute as
follows:

g++ -g -Wall -c main.cpp
yasm -g dwarf2 -f elf64 stats.asm -l stats.lst
g++ -g -o main main.o stats.o

Note, Ubuntu 18 and above will require the no-pie option on the gcc as shown:
g++ -g -no-pie -o main main.o stats.o

The C compiler, gcc, or the C++ compiler, g++, is used to perform the linking as it is
aware of the appropriate locations for the various C/C++ libraries.

 14.4 Exercises
Below are some quiz questions and suggested projects based on this chapter.

Page 232

Chapter 14.0 ◄ Multiple Source Files

 14.4.1 Quiz Questions
Below are some quiz questions based on this chapter.

1) What is the statement to declare the functions, func1() and func2(), as external
assuming no arguments are needed for either function?

2) What is the statement to declare the functions, func1() and func2(), as external if
two integer arguments are used for each function?

3) What will happen if an external function is called but is not declared as external?

4) If an externally declared function is called but the programmer did not actually
write the function, when would the error be flagged, assemble-time, link-time, or
run-time?

5) If an externally declared function is called but the programmer did not actually
write the function, what might the error be?

6) If the “-g” option is omitted from the assemble and link commands, would the
program be able to execute?

 14.4.2 Suggested Projects
Below are some suggested projects based on this chapter.

1) Implement the assembly language example program to find the sum and average
for a list of signed integers. Ensure that the main and function are in different
source files. Use the debugger to execute the program and display the final
results.

2) Based on the example function stats(), split it into two value returning functions,
lstSum() and lstAverage(). As noted in Chapter 12, Functions, value returning
functions return their result in the A register. Since these are double-words, the
result will be returned in eax. Ensure that the main and both functions are in two
different source files. The two functions can be in the same source file. Use the
debugger to execute the program and display the final results.

3) Extend the previous exercise to display the sum and average to the console. The
printString() example function (from multiple previous examples) should be
placed in a third source file (which can be used on other exercises). This project
will require a function to convert an integer to ASCII (as outlined in Chapter 10).
Use the debugger as needed to debug the program. When working, execute the
program without the debugger and verify that the correct results are displayed to
the console.

Page 233

Chapter 14.0 ◄ Multiple Source Files

4) Implement one of the C/C++ example main programs (either one). Additionally,
implement the assembly language stats() function example. Develop a simple
bash script to perform the compile, assemble, and link. The link should be
performed with the applicable C/C++ compiler. Use the debugger as needed to
debug the program. When working, execute the program without the debugger
and verify that the correct results are displayed to the console.

Page 234

 15.0 Stack Buffer Overflow
A stack buffer overflow44 can occur when a program overflows a stack-based dynamic
variable (as described in Chapter 12.9, Stack-Based Local Variables). For example, if a
program allocates and uses a stack-based local array holding 50 elements and more than
50 elements are stored in the array, an overflow occurs. Such overflows are generally
bad and typically cause program bugs and possibly even crash the program. The stack
will contain other important information such as other variables, preserved registers,
frame pointer, return address, and/or stack-based parameters. If such data is
overwritten, it will likely cause problems which can be very difficult to debug since the
symptom will likely be unrelated to where the problem actually occurs.

If a stack buffer overflow is caused deliberately as part of an attack it is referred to as
stack smashing. Due to the standard calling convention, the layout of the stack-based
call frame or activation record is fairly predictable. Such a stack buffer overflow can be
by a malicious individual to inject executable code into the currently running program to
perform some inappropriate actions. Under the right circumstances, such code injection
could allow a black-hat45 hacker to perform unwanted actions potentially taking over the
system.

The process of how a stack buffer overflow occurs and how it can be exploited are
provided in this chapter. This is presented in order to allow developers to clearly
understand the problem and thus learn how to protect themselves against such
vulnerabilities. The reader must be familiar with the details of the standard calling
convention as outlined in Chapter 12, Functions.

It should be noted that the stack buffer overflow problem exists in high-level languages.
Working in assembly languages makes it easier to more clearly see and understand the
details.

44 For more information, refer to: http://en.wikipedia.org/wiki/Stack_buffer_overflow
45 For more information, refer to: http://en.wikipedia.org/wiki/Black_hat

Page 235

Chapter
15

My new computer is so fast it requires two
HALT instructions to stop it.

Chapter 15.0 ◄ Stack Buffer Overflow

 15.1 Understanding a Stack Buffer Overflow
When a program calls a function, the standard calling convention provides the guidance
for how the parameters are passed, how the return address is saved, how and which
registers must be preserved, and how stack-based local variables are to be allocated.

For example, consider the function call;
expFunc(arg1, arg2, arg3);

In addition, we will assume that the function, expFunc(), reads in a line of text from the
user and stores it in a locally declared array. The local variables include the array of 48
bytes and one quadword local variable (8 bytes). This can be accomplished easily in a
high-level language or as is done in Chapter 13, System Services, Console Input.

The resulting call frame would be as follows:

Page 236

. . .

rip ← return address

rbp ← preserved base pointer

← Local array (48 bytes)

← Local quad variable (8 bytes)

rbx ← preserved saved register

r12 ← preserved saved register

r13 ← preserved saved register

. . .

Illustration 26: Stack Call Frame Example

Chapter 15.0 ◄ Stack Buffer Overflow

When the function completes, all elements of the call frame are removed. The preserved
registers are restored to their original contents, the local variables are removed, and the
return address is copied off the stack and placed in the rip register which effects a jump
back to the original calling routine. As noted in Chapter 12, Functions, this layout
supports multiple levels of function calls including recursion.

The example in Chapter 13 that reads characters from the user and entered them into an
array explicitly checked the character count to ensure that the count does not exceed the
buffer size. It would be easy to forget to perform this important check. Indeed, some C
functions such as strcpy() do not perform verification of sizes and are thus considered
unsafe46 or described as an unsafe function.

In this example, over-writing the 48 character buffer will destroy the contents of the
stack that contains the original values for the rbp register and possibly the rip register.
If the stack content of the original value of the rip register is altered or corrupted in any
way, the function will not be able to return to the calling routine and would attempt to
jump to some random location. If the random location is outside the program scope,
which is likely, the program will generate a segment fault (i.e., “seg fault” or program
crash).

Debugging this type of error can be a significant challenge. The error appears at the
very end of the function (on the return). The problem is actually in the body of the
function and in fact may be due to code that is not included (as opposed to wrong code
that is there).

Testing if a program has this vulnerability would involve typing significantly more
characters than expected when prompted. For example, if name is prompted for and 200
characters are entered (possibly by holding down a key), the program crashing would be
a sign that such a vulnerability exists. An error message would indicate such a
vulnerability does not exist. While straightforward, this type of testing is often not
checked thoroughly or even omitted entirely.

 15.2 Code to Inject
Before discussing how the stack buffer overflow might be exploited, we will review
what code might be injected. The code to be injected could be many things. We will
assume the program is being executed in a controlled environment with no console
access for the user. The lack of console access would limit what a user could do ideally
to only what the program allowed. This might be the case if the program is server-based

46 For more information, refer to:
http://en.wikipedia.org/wiki/C_standard_library#Buffer_overflow_vulnerabilities

Page 237

Chapter 15.0 ◄ Stack Buffer Overflow

interacting with a user through a web or application front-end. The server would be
protected from direct user access for obvious security reasons.

As such, one possible attack vector might be to obtain console access to the back-end
server (where such access is normally not allowed).

There is a system service that can execute another program. Using this system service,
exec, we could execute the sh program (shell) which is a standard Linux program. This
will create and open a shell providing console access. The newly created shell is limited
to the privileges of the process that started it. In a good security environment, the
process will be granted only the privileges it requires. In a poor security environment,
the process may have additional, unnecessary privileges which would make it easier for
an unauthorized black-hat hacker to cause problems.

Given the following data declarations:
NULL equ 0
progName db "/bin/sh", NULL

An example of the exec system service would be as follows:
; Example, system service call for exec.
 mov rax, 59
 mov rdi, progName
 syscall

A new console will appear. The reader is encouraged to try this code example and see it
work.

The list file for this code fragment would be as follows:
40 00000000 48C7C03B000000 mov rax, 59
41 00000007 48C7C7[00000000] mov rdi, progName
42 0000000E 0F05 syscall

Recall that the first column is the line number, the second column is relative address in
the code section and the third column is the machine language or the hex representation
of the human readable instruction shown in the fourth column. The [00000000]
represents the relative address of the string in the data section (progName in this
example). It is zero since it is the first (and only) variable in the data section for this
example.

Page 238

Chapter 15.0 ◄ Stack Buffer Overflow

If the machine language shown is entered into memory and executed, a shell or console
would be opened. Getting the hex version of the code into memory can only be
performed via the keyboard (since there is no direct access to file system). This would
be done one character at a time. The 0x48 is the ASCII code for “0”, so “0” could be
entered for that byte. However, the 0x0f and many of the other characters are more
difficult to enter directly as ASCII.

The command shell will allow entry of hex code in hex. By typing control key and the
left shift followed by a lower-case u and then four hex digits (must be hex), the hex
values can be entered one at a time. For example, to enter the 0x3f, it would be;

CTRL SHIFT u 3 f

This can be done for most of the bytes except the 0x00. The 0x00 is a NULL which is a
non-printable ASCII characters (used to mark string terminations). As such, the NULL
cannot be entered from the keyboard. Additionally, the [00000000] address would not
make sense if the code is injected into another program.

To address these issues, we can re-write the example code and eliminate the NULL's
and change the address reference. The NULL's can be eliminated by using different
instructions. For example, setting rax to 59 can be accomplished by xor'ing rax with
itself and placing the 59 in al (having already ensured the upper 56 bits are 0 via the
xor). The string can be placed on the stack and the current rsp used as the address of the
string. The string, “\bin\sh” is 7 bytes and the stack operation will require a push of 8
bytes. Again, the NULL cannot be entered and is not counted. An extra, unnecessary
“/” can be added to the string which will not impact the operation providing exactly 8
bytes in the string. Since the architecture is little-endian, in order to ensure that the start
of the string is in low memory, it must be in the least significant byte of the push. This
will make the string appear backwards.

The revised program fragment would be as follows:
xor rax, rax ; clear rax
push rax ; place NULLs on stack
mov rbx, 0x68732f6e69622f2f ; string -> "//bin/sh"
push rbx ; put string in memory
mov al, 59 ; call code in rax
mov rdi, rsp ; rdi = addr of string
syscall ; system call

Page 239

Chapter 15.0 ◄ Stack Buffer Overflow

The list file for the program fragment would be as follows:
 52 00000013 4831C0 xor rax, rax
 53 00000016 50 push rax
 54 00000017 48BB2F2F62696E2F73 mov rbx, 0x68732f6e69622f2f
 55 00000017 68
 56 00000021 53 push rbx
 57 00000022 B03B mov al, 59
 58 00000024 4889E7 mov rdi, rsp
 59 00000027 0F05 syscall

In this revised code, there are no NULL's and the address reference is obtained from the
stack pointer (rsp) which points to the correct string.

There is an assembly language instruction nop which performs no operation with a
machine code of 0x90. In this example, the nop instruction is used simply to round out
the machine code to an even multiple of 8 bytes.

The series of hex values that would need to be entered is as follows:
0x48 0x31 0xC0 0x50 0x48 0xBB 0x2F 0x2F
0x62 0x69 0x6E 0x2F 0x73 0x68 0x53 0xB0
0x3B 0x48 0x89 0xE7 0x0F 0x05 0x90 0x90

While somewhat tedious, these characters can be entered by hand.

 15.3 Code Injection
If the code to inject is available and can be entered, the next step would be actually
getting the code executed.

Based on the previous example call frame, the code would be entered preceded by a
series of nop's (0x90). The exact spot where the rip is stored in the stack can be
determined through trial and error. When the first byte of the 8 byte address is altered,
the program will not be able to return to the calling routine and will likely crash. If the
bytes of the rbp are corrupted, the program may fail in some way, but it will be different
than the immediate crash caused by the corrupted rip. The code entered would be
extended by 1 byte on each of many successive attempts. Finding this exact location in
this manner will take patience.

Once the rip location has been determined, the 8 bytes that are entered there will need to
be the address of where the injected code is in the stack where the user input was stored.
This also would be determined through trial and error. However, the exact address of
the start of the injected code is not required. Starting anywhere within the preceding

Page 240

Chapter 15.0 ◄ Stack Buffer Overflow

nop's would be sufficient. This is referred to as a NOP slide47 which will help “slide”
the CPU's instruction execution flow to the injected code.

A larger local array would allow even more room for a longer NOP Slide.

 15.4 Code Injection Protections
A number of methods have been developed and implemented to protect against the stack
buffer overflow. Some of these methods are summarized here. It must be noted that
none of these methods are completely perfect.

47 For more information, refer to: http://en.wikipedia.org/wiki/NOP_slide

Page 241

. . .

← return address (altered)

9090909090909090 ← preserved base pointer (destroyed)

9090909090909090 ← trailing nop's

050FE78948539090

68732F6E69622F2F

BB483BB052C03148 ← injected code

9090909090909090 ← nop's

9090909090909090 ← Local array (48 bytes)

← Local variable (8 bytes)

rbx ← preserved saved register

r12 ← preserved saved register

r13 ← preserved saved register

. . .

Illustration 27: Stack Call Frame Corruption

Chapter 15.0 ◄ Stack Buffer Overflow

 15.4.1 Data Stack Smashing Protector (or Canaries)
Data stack smashing protector, also referred to as stack canaries, is used to detect a stack
buffer overflow before execution of malicious code can occur. This works by placing
an integer, the value of which is randomly chosen at program start, in memory just
before the return address (rip) in the call frame. In order to overwrite the return address,
and thus execute the injected code, the canary value must also be overwritten. This
canary value is checked to make sure it has not changed before a routine pops the return
address.

For the GNU g++ compiler, this option (-f-stack-protector) is enabled by default. It
can be turned off with the -fno-stack-protector compiler option. Turning it off would
be necessary in order to perform testing using a C/C++ program of the injection
techniques outlined in this chapter.

 15.4.2 Data Execution Prevention
Data Execution Prevention48 (DEP) is a security feature that marks areas of memory as
either "executable" or "nonexecutable". Only code in a marked "executable" area is
allowed to be executed. Code that is or injected into an area marked “nonexecutable”
will not be allowed to execute. This helps prevent stack buffer overflow code injection.

 15.4.3 Data Address Space Layout Randomization
Address space layout randomization (ASLR) is a technique to prevent an attacker from
reliably jumping to the injected code. ASLR randomly arranges the address space
positions of key data areas of a process, including the base of the executable and the
positions of the stack, heap and libraries.

 15.5 Exercises
Below are some quiz questions and suggested projects based on this chapter.

 15.5.1 Quiz Questions
Below are some quiz questions based on this chapter.

1) When stack buffer overflow is caused deliberately as part of an attack it is
referred as what?

2) What does it mean when a C function is considered unsafe?

48 For more information, refer to: http://en.wikipedia.org/wiki/Data_Execution_Prevention

Page 242

Chapter 15.0 ◄ Stack Buffer Overflow

3) Is a program that reads user input still vulnerable if the input buffer is
sufficiently large (e.g., >1024 bytes)?

4) How might an attacker determine if an interactive program is vulnerable to a
buffer overflow attack?

5) What is a “NOP slide”?

6) The text example injected code to open a new shell. Provide at least one
different idea for injected code that would cause problems.

7) Name three techniques designed to prevent stack buffer overflow attacks.

 15.5.2 Suggested Projects
Below are some suggested projects based on this chapter.

1) Implement the second example program fragment to open a new shell. Use the
debugger to execute the program and display the final results. Execute the
program without the debugger and verify that a new shell is opened.

2) Implement the console input program from Chapter 13. Remove the code for the
buffer size check. Execute the program without the debugger and ensure the
appropriate input is read and that the output is displayed to the console. Verify
that entering too many characters will crash the program.

3) Using the program from the previous question and the program fragment to open
a shell, attempt to inject the code into the running program. In order to save
time, print the value of the rsp at an appropriate location to allow the guessing of
the target address significantly easier.

Page 243

Chapter 15.0 ◄ Stack Buffer Overflow

Page 244

 16.0 Command Line Arguments
This chapter provides a summary of how the operating system handles command line
arguments and how assembly language routines can access the arguments.

The term “command line arguments” is used to refer to the characters, if any, entered on
the command line after the program name. The command line arguments are often used
to provide information or parameters to the program without the need for the I/O
associated with interactive prompting. Of course, if the parameters are not correct, the
entire line must be re-entered.

Command line arguments are used by the assembler and linker to provide information
for input files, output files, and various other options.

 16.1 Parsing Command Line Arguments
The operating system is responsible for parsing, or reading, the command line
arguments and delivering the information to the program. It is the responsibility of the
program to determine what is considered correct and incorrect. When reading the
command line, the operating system will consider an argument a set of non-space
characters (i.e., a string). The space or spaces between arguments is removed or ignored
by the operating system. In addition, the program name itself is considered the first, and
possibly only, argument. If other arguments are entered, at least one space is required
between each argument.

All arguments are delivered to the program as character strings, even number
information. If needed, the program must convert the character data into the number
value (float or integer).

For example, executing the program expProg with the following command line
arguments:

./expProg one 42 three

Page 245

Chapter
16

The code that is the hardest to debug is the
code you know can't possibly be wrong.

Chapter 16.0 ◄ Command Line Arguments

will result in four arguments as follows:
1. ./expProg
2. one
3. 42
4. three

The command line arguments are delivered to the program as parameters. As such, the
program is like a function being called by the operating system. So, the standard calling
convention is used to convey the parameters.

 16.2 High-Level Language Example
In general, it is assumed that the reader is already familiar with the basic C/C++
command line handling. This section presents a brief summary of how the C/C++
language handles the delivery of command line information to the program.

The count of arguments is passed to the main program as the first integer parameter,
typically called argc. The second parameter, typically called argv, is an array of
addresses for each string associated with the corresponding argument.

For example, the following C++ example program will read the command line
arguments and display them to the screen.

#include <iomanip>
#include <iostream>
using namespace std;
int main(int argc, char* argv[])
{
string bars;
bars.append(50,'-');
cout << bars << endl;
cout << "Command Line Arguments Example"

<< endl << endl;
cout << "Total arguments provided: " <<

argc << endl;
cout << "The name used to start the program: "

<< argv[0] << endl;

Page 246

Chapter 16.0 ◄ Command Line Arguments

if (argc > 1) {
cout << endl << "The arguments are:" << endl;
for (int n = 1; n < argc; n++)

cout << setw(2) << n << ": " <<
argv[n] << endl;

}
cout << endl;
cout << bars << endl;
return 0;

}

Assuming the program is named argsExp, executing this program will produce the
following output:

./argsExp one 34 three
--
Command Line Arguments Example
Total arguments provided: 4
The name used to start the program: ./argsExp
The arguments are:
 1: one
 2: 34
 3: three
--

It should be noted that the parameter '34' is a string. This example simply printed the
string to the console. If a parameter is to be used as a numeric value, the program must
convert as required. This includes all error checking as necessary.

 16.3 Argument Count and Argument Vector Table
Since the operating system will call the main program as a function, the standard calling
convention applies. The argument count and the argument vector address are passed as
parameters in rdi and rsi in accordance with the standard calling convention. The first
argument, in rdi, is the integer argument count. The second argument, in rsi, is the
argument vector table address.

Page 247

Chapter 16.0 ◄ Command Line Arguments

The argument vector table is an array containing the quadword addresses of the string
for each argument. Assuming the previous examples with 4 total arguments, the basic
argument vector table layout is as follows:

Each string is NULL terminated by the operating system and will not contain a new line
character.

 16.4 Assembly Language Example
An example assembly language program to read and display the command line
arguments is included for reference. This example simply reads and displays the
command line arguments.

; Command Line Arguments Example
; ---
section .data
; -----
; Define standard constants.

Page 248

Table Contents C/C++ Reference

quadword
address

of 4th argument argv[3]

quadword
address

of 3rd argument argv[2]

quadword
address

of 2nd argument argv[1]

argument vector (rsi) →

quadword
address

of 1st argument argv[0]

Illustration 28: Argument Vector Layout

Chapter 16.0 ◄ Command Line Arguments

LF equ 10 ; line feed
NULL equ 0 ; end of string
TRUE equ 1
FALSE equ 0
EXIT_SUCCESS equ 0 ; success code
STDIN equ 0 ; standard input
STDOUT equ 1 ; standard output
STDERR equ 2 ; standard error
SYS_read equ 0 ; read
SYS_write equ 1 ; write
SYS_open equ 2 ; file open
SYS_close equ 3 ; file close
SYS_fork equ 57 ; fork
SYS_exit equ 60 ; terminate
SYS_creat equ 85 ; file open/create
SYS_time equ 201 ; get time
; -----
; Variables for main.
newLine db LF, NULL
; --
section .text
global main
main:
; -----
; Get command line arguments and echo to screen.
; Based on the standard calling convention,
; rdi = argc (argument count)
; rsi = argv (starting address of argument vector)

mov r12, rdi ; save for later use...
mov r13, rsi

; -----
; Simple loop to display each argument to the screen.
; Each argument is a NULL terminated string, so can just
; print directly.

Page 249

Chapter 16.0 ◄ Command Line Arguments

printArguments:
mov rdi, newLine
call printString
mov rbx, 0

printLoop:
mov rdi, qword [r13+rbx*8]
call printString
mov rdi, newLine
call printString
inc rbx
cmp rbx, r12
jl printLoop

; -----
; Example program done.
exampleDone:

mov rax, SYS_exit
mov rdi, EXIT_SUCCESS
syscall

; **
; Generic procedure to display a string to the screen.
; String must be NULL terminated.
; Algorithm:
; Count characters in string (excluding NULL)
; Use syscall to output characters
; Arguments:
; 1) address, string
; Returns:
; nothing
global printString
printString:

push rbp
mov rbp, rsp
push rbx

; -----
; Count characters in string.

Page 250

Chapter 16.0 ◄ Command Line Arguments

mov rbx, rdi
mov rdx, 0

strCountLoop:
cmp byte [rbx], NULL
je strCountDone
inc rdx
inc rbx
jmp strCountLoop

strCountDone:
cmp rdx, 0
je prtDone

; -----
; Call OS to output string.

mov rax, SYS_write ; code for write()
mov rsi, rdi ; addr of characters
mov edi, STDOUT ; file descriptor

; count set above
syscall ; system call

; -----
; String printed, return to calling routine.
prtDone:

pop rbx
pop rbp
ret

; ***

The printString() function is repeated in this example and is unchanged from the
previous examples.

It must be noted that in order for this to work, the program should be assembled as usual
but linked with the GNU C compiler, either GCC or G++.

For example, assuming this example program is named cmdLine.asm, the assembly and
linking would be as follows:

yasm -g dwarf2 -f elf64 cmdLine.asm -l cmdLine.lst
gcc -g -o cmdLine cmdLine.o

Page 251

Chapter 16.0 ◄ Command Line Arguments

Note, Ubuntu 18 will require the no-pie option on the gcc command as shown:
gcc -g -no-pie -o cmdLine cmdLine.o

If the standard linker is used, the arguments will not be passed in the correct manner.

 16.5 Exercises
Below are some quiz questions and suggested projects based on this chapter.

 16.5.1 Quiz Questions
Below are some quiz questions based on this chapter.

1) What software entity is responsible for parsing or reading the command line
arguments?

2) What software entity is responsible for verifying or checking the command line
arguments?

3) What is the first command line argument?

4) Explain what argc and argv refer to.

5) In an assembly language program, where is argc passed to the program?

6) In an assembly language program, where is argv passed to the program?

7) If seven spaces are entered between each of the command line arguments, how
are the spaces removed when the command line arguments are checked?

8) If a number is expected as a command line argument, and the user enters “12x3”
(an invalid value), is an error generated by the operating system (i.e., the
loader)?

 16.5.2 Suggested Projects
Below are some suggested projects based on this chapter.

1) Implement the example program to read and display the command line
arguments. Use the debugger to execute the program and display the final
results. Execute the program without the debugger and verify the appropriate
output is displayed to the console.

Page 252

Chapter 16.0 ◄ Command Line Arguments

2) Convert the command line example into a function that will display each of the
command line arguments to the console. Use the debugger as necessary to
debug the program. Execute the program without the debugger and verify the
appropriate output is displayed to the console.

3) Create an assembly language program to accept a file name on the command line
and open the file and display the one line message contained in the file. A series
of small text file should be created each containing one of the very important
messages at the start of each chapter of this text. The program should perform
error checking on the file name, and if valid, open the file. If the file opens
successfully, the message should be read from the file displayed to the console.
Appropriate error messages should be displayed if the file cannot be opened or
read. The program may assume that each message will be < 256 characters. Use
the debugger as necessary to debug the program. Execute the program without
the debugger and verify the appropriate output is displayed to the console.

4) Create an assembly language program that will accept three unsigned integer
numbers from the command line, add the three numbers, and display each of the
three original numbers and the sum. If too many or too few command line
arguments are provided, an error message should be displayed. This program
will require that each of the ASCII strings be converted into integer.
Appropriate error checking should be included. For example, “123” is correct
while “12a3” is incorrect. The main program should call functions as necessary
for the ASCII to integer conversion and the output. Use the debugger as
necessary to debug the program. Execute the program without the debugger and
verify the appropriate output is displayed to the console.

Page 253

Chapter 16.0 ◄ Command Line Arguments

Page 254

 17.0 Input/Output Buffering
This chapter provides information regarding Input/Output (I/O) buffering. I/O buffering
is a process that improves the overall throughput and efficiency of I/O operations. The
general topic of I/O buffering is quite broad and can encompass many things including
hardware, software, and data networking. This text addresses single buffer buffering for
reading information from a file. While this is a very specific application, the general
concepts regarding how and why buffering is performed apply generally to many
different applications.

High-level languages provide library functions that perform the I/O buffering and hide
the associated complexity from the programmer. This is very desirable when
programming. When working at a low-level, the buffering will need to be implemented
explicitly (by us). The goal is to provide a detailed understanding of why and how
buffering is performed in order to provide a more in-depth understanding of how a
computer operates. This should help displace notions that such I/O is magic. And, of
course, help us appreciate the compiler I/O library functions.

 17.1 Why Buffer?
In order to fully understand the importance of buffering, it is useful to review the
memory hierarchy as outlined in Chapter 2, Architecture. As noted, accesses to
secondary storage are significantly more expensive in terms of run-time than accesses to
main memory. This would strongly encourage us to limit the number of secondary
storage accesses by using some temporary storage, referred to as a buffer, in main
memory.

Such a buffer would also help reduce the overhead associated with system calls. For
example, a file read system call would involve pausing our program and turning over
control to the OS. The OS would validate our request (e.g., ensure file descriptor is
valid) and then pass the request to the secondary storage control via the system bus. The

Page 255

Chapter
17

If I had it all to do over again, I'd spell creat
with an "e".

- Kernighan

Chapter 17.0 ◄ Input/Output Buffering

controller would do whatever is necessary to obtain the requested data and place it
directly into main memory location as instructed by the OS, again accessing the system
bus to perform the transfer. Note, this is referred to as Direct Memory Access49 (DMA).
Once the secondary storage controller has completed the transfer, it notifies the OS. The
OS will then notify and resume our program. This process represents system overhead
since our program is just waiting for completion of the system service request. It would
make sense to obtain more data rather than less data on each system service call. It
should be fairly obvious that limiting the number of system service requests will help
the overall performance of our program.

Additionally, as described in Chapter 13, System Services, the low-level file read and
write operations require the number of characters to read. A typical operation desired
by a programmer would be to read a line as is provided by high-level language functions
such as the C++ getline() function. It is unknown ahead of time how many characters
might be on that line. This makes the low-level file read operation more difficult since
the exact number of characters to read is required.

We, as humans, place special meaning and significance to the LF character (end of line).
In the computer, the LF is just another ASCII character, no different than any other. We
see a file as a set of lines, but in the computer the file is just a collection of bytes, one
after another.

The process used for reading interactive input involved reading one character at a time.
This could be used to address the issue of not knowing ahead of time how many
characters are on a line. As was done for interactive input, the program could just read
one at a time until an LF is found and stop.

Such a process will be unduly slow for reading large volumes of information from a file.
Interactive input expects the user to type characters. The computer is easily able to keep
up with a human. Even the fastest typist will not be able to out-type the computer
(assuming efficiently written code). Further, interactive input is generally limited to
relatively small amounts. Input from a file is not awaiting user action and is generally
not limited to small amounts of data. For a sufficiently large file, single character I/O
would be quite slow. Note, testing and quantizing the performance difference is left as
an exercise.

To address this, the input data will be buffered. In this context, we will read a chunk of
the file, say 100,000 characters, into a large array which is referred to as a buffer or
input buffer. When a “line” of text is required, the line will be obtained from the input
buffer. The first time a line is requested, the file is read and the buffer is filled. After

49 For more information, refer to: http://en.wikipedia.org/wiki/Direct_memory_access

Page 256

Chapter 17.0 ◄ Input/Output Buffering

the file read completes, the line is returned from the buffer (all characters up to and
including the LF). Successive calls to get the next line are satisfied by obtaining the
characters from the buffer without needing to read the file again. This can keep
happening until all the characters in the buffer have been returned at which point the file
will need to be read again. When there are no more characters, the input is completed
and the program can be terminated.

This process helps improve performance, but is more complicated. High-level language
functions, such as getline, hide this complexity from the user. When working at the
low-level we will need to write the function to get the next line ourselves.

It is important to understand the cause of the performance degradation in order to fully
understand why buffering will improve performance.

 17.2 Buffering Algorithm
The first step when developing an algorithm is to understand the problem. We will
assume the file is already open and available for reading. For our buffering problem, we
wish to provide a myGetLine() function to a calling routine.

The routine might be called as follows:
status = myGetLine(fileDescriptor, textLine, MAXLEN);

The file opening and associated error checking is required but would be addressed
separately and is outlined in Chapter 13, System Services. Once a file descriptor is
obtained, it can be made available to the myGetLine() function. It is shown here as an
explicit parameter for clarity.

As you may already be aware there is no special end of file code or character. We must
infer the end of file based on the number of characters actually read. The file read
system service will return the actual number of characters read. If the process requests
100,000 characters to be read and less than 100,000 are read, the end of file has been
reached and all characters have been read. Further attempts at reading the file will
generate an error. While it is easy to recognize the end of file and thus the last time the
file needs to be read, the remaining characters in the buffer need to be processed. So
while the program may know the end of file has been found, the program must continue
until the buffer is depleted.

The calling routine should not need to know any of the details regarding the buffering,
buffer management, or file operations. If a line of text from the file is available, the
myGetLine() function will return the line from the file and a TRUE status. The line is
returned via the passed argument. An argument for the maximum length of the text line

Page 257

Chapter 17.0 ◄ Input/Output Buffering

is also provided to ensure that the text line array is not overwritten. If a line is not
available, possibly due to all lines having been already returned or an unrecoverable
read error, the function should return FALSE. An unrecoverable read error might occur
if the storage medium goes off-line (drive removed), the file is deleted from another
console, or a hardware error occurs. Such errors will make continued reading
impossible. In such an event, an error message will be displayed and a FALSE returned
which will halt the program (with incomplete results).

In general, the function would read characters, up to and including the LF, from the
large buffer and place them in the line buffer, named textLine in the above example call.

This is easily done when there are characters available in the buffer. It will require an
extra step to ensure that the buffer has characters. The file must be read if the buffer is
empty, either due to the very first call or when all characters in the buffer have been
returned. It is possible to check if characters are available by checking the current
location of the next character to read in the buffer against the buffer size. The current
location cannot be allowed to exceed the buffer size (or we would be accessing a
location past the end of the buffer array). This is fairly straightforward when the buffer
is filled entirely. The buffer may be partially filled due to a file size smaller than the
buffer size or on the last file read after a series of file reads. To address this, the end of
the buffer, initially set to the buffer size, must be set based on the actual number of
characters read. There is a special case when the number of characters in the file is an
exact multiple of the buffer size. If this occurs, the returned number of characters read
is 0. An additional check is required to address this possibility.

Now that the problem and all the associated subtle issues are understood, we can take
the next step of developing an algorithm. In general this process is typically iterative.
That is, a first cut is developed, reviewed and refined. This would occur multiple times
until a comprehensive algorithm is obtained. While some try to rush through this step, it
is a mistake. Saving minutes on the algorithm development step means extra hours of
debugging.

Based on this earlier example, the passed arguments include;
; file descriptor → file descriptor for open file,
; as required for read system service
; text line → starting address of
; max length → maximum length of the array for
; the text line

Page 258

Chapter 17.0 ◄ Input/Output Buffering

Some variables are required and defined as follows:
; BUFFER_SIZE → parameter for size of buffer
; currIndex → index for current location in
; the buffer, initially set to BUFFER_SIZE
; buffMaximum → current maximum size of buffer,
; initially set to BUFFER_SIZE
; eofFlag → boolean to mark if the end of file
; has been found, initially set to false

Based on an understanding of the problem, a number of different algorithmic
approaches are possible. Using the arguments and local variables, one such approach is
presented for reference.

; myGetLine(fileDescriptor, textLine, maxLength) {
; repeat {
; if current index  buffer maximum
; read buffer (buffer size)
; if error
; handle read error
; display error message
; exit routine (with false)
; reset pointers
; if chars read < characters request read
; set eofFlag = TRUE
; get one character from buffer at current index
; place character in text line buffer
; increment current index
; if character is LF
; exit with true
; }
; }

This algorithm outline does not verify that the text line buffer is not overwritten nor
does it handle the case when the file size is an exact multiple of the buffer size.
Refining, implementing, and testing the algorithm is left to the reader as an exercise.

As presented, this algorithm will require statically declared variables. Stack dynamic
variables cannot be used here since the information is required to be maintained between
successive calls.

The variables and algorithm are provided as program comments. The algorithm is the
most important part of the program documentation and will not only help when writing

Page 259

Chapter 17.0 ◄ Input/Output Buffering

the code but in the debugging process. Whatever time you think you are saving by
skipping the documentation, it will cost far, far more time when debugging.

 17.3 Exercises
Below are some quiz questions and suggested projects based on this chapter.

 17.3.1 Quiz Questions
Below are some quiz questions based on this chapter.

1) What is the end of line character or characters for Linux and Windows?

2) Based on the explanations in this chapter, what is I/O buffering?

3) In reference to a high-level language, where are the I/O buffering routines
located?

4) What is the advantage of hiding the I/O buffering complexity from the
programmer?

5) What is the key advantage of performing I/O buffering (as opposed to reading
one character at a time)?

6) Why is it difficult to use the file read system service to read one text line from a
file?

7) In terms of the memory hierarchy, why is buffering advantageous?

8) In terms of system overhead, why is buffering advantageous?

9) Why does the file read buffering algorithm require statically declared variables?

10) How is the end of file recognized by the program?

11) Provide one, of many, reasons that a file read request might return an error even
when the file has been opened successfully.

12) What must be done to address the case when the file size is an exact multiple of
the buffer size?

13) Why is the maximum length of the text line passed as an argument?

14) How does the presented algorithm ensure that the very first call the myGetLine()
will read the buffer?

Page 260

Chapter 17.0 ◄ Input/Output Buffering

 17.3.2 Suggested Projects
Below are some suggested projects based on this chapter.

1) Refine the presented algorithm to address maximum text line check and
possibility that the file size is an even multiple of the buffer size. This includes
formalizing the variable names and looping constructs (many possible choices).

2) Create a simple main program that will test the myGetLine() function by opening
a file, calling the myGetLine() function, and displaying the lines to the console.
Test the program with a series of different size files including ones smaller,
larger, and much larger than the selected buffer size. Capture the program
output and compare the captured output to the original file to ensure your
program is correct.

3) Create a program that will read two file names from the command line, read
lines from the first file, add line numbers, and write the modified line (with the
line number) to the second file. For example, your add lines program might be
initiated with:

./addLine inFile.txt newFile.txt

where the inFile.txt exists and contains standard ASCII text. If the inFile.txt file
does not exist an error should be generated and the program terminated. The
program should open/create the file newFile.txt and write the lines, with the line
numbers, to the newFile.txt file. The output file should be created, deleting an
old version if one exists. Use a text editor to verify that the line numbers track
correctly in the output file.

Page 261

Chapter 17.0 ◄ Input/Output Buffering

Page 262

 18.0 Floating-Point Instructions
This chapter provides a basic overview for a subset of the x86-64 floating-point
instructions. Only the most basic instructions are covered.

The text focuses on the x86-64 floating-point operations, which are not the same as the
32-bit floating-point operations.

The instructions are presented in the following order:

• Data Movement

• Integer / Floating-point Conversion Instructions

• Arithmetic Instructions

• Floating-point Control Instructions

A complete listing of the instructions covered in this text is located in Appendix B for
reference.

It should be noted that the floating-point arithmetic operations do not require the use of
a specific register and do not change types (sizes). This makes the floating-point
instructions easier to use.

 18.1 Floating-Point Values
Floating-point values are typically represented as either single precision (32-bits) or
double precision (64-bits). In C and C++ single precision floating-point variables are
typically declared as float type and double precision floating-point variables are
declared as double type. As noted in the following sections, assembly language
instructions will use an s (lower-case letter S) qualifier to refer to single precision and a
d (lower-case letter D) qualifier to refer to double precision.

Page 263

Chapter
18

To err is human; to make a real mess, you
need a computer.

Chapter 18.0 ◄ Floating-Point Instructions

 18.2 Floating-Point Registers
There are a set of dedicated registers, referred to as XMM registers, used to support
floating-point operations. Floating-point operations must use the floating-point
registers. The XMM registers are 128-bits and 256-bits on the later processors.
Initially, we will only use the lower 32 or 64-bits.

There are 16 XMM registers, named xmm0 through xmm15. Refer to Chapter 2 for an
explanation and summary of the CPU registers.

 18.3 Data Movement
Typically, data must be moved into a CPU floating-point register in order to be operated
upon. Once the calculations are completed, the result may be copied from the register
and placed into a variable. There are a number of simple formulas in the example
program that perform these steps. This basic data movement operations are performed
with the move instruction.

The general form of the move instruction is:
movss <dest>, <src>
movsd <dest>, <src>

For the movss instruction, a single 32-bit source operand is copied into the destination
operand. For the movsd instruction, a single 64-bit source operand is copied into the
destination operand. The value of the source operand is unchanged. The destination
and source operand must be of the correct size for the instruction (32 or 64-bits).
Neither operand can be an immediate value. Both operands, cannot be memory,
however one can be. If a memory to memory operation is required, two instructions
must be used.

The move instruction loads one value, using the lower 32 or 64-bits, into or out of the
register. Other move instructions are required to load multiple values.

The floating-point move instructions are summarized as follows:

Instruction Explanation
 movss <dest>, <src> Copy 32-bit source operand to the 32-bit

destination operand.
Note 1, both operands cannot be memory.
Note 2, operands cannot be an immediate.

Page 264

Chapter 18.0 ◄ Floating-Point Instructions

Instruction Explanation

Examples: movss xmm0, dword [x]
 movss dword [fltSVar], xmm1
 movss xmm3, xmm2

 movsd <dest>, <src> Copy 64-bit source operand to the 64-bit
destination operand.
Note 1, both operands cannot be memory.
Note 2, operands cannot be an immediate.

Examples: movsd xmm0, qword [y]
 movsd qword [fltDVar], xmm1
 movsd xmm3, xmm2

A more complete list of the instructions is located in Appendix B.

For example, assuming the following data declarations:
fSVar1 dd 3.14
fSVar2 dd 0.0
fDVar1 dq 6.28
fDVar2 dq 0.0

To perform the basic operations of:
fSVar2 = fSVar2 ; single precision variables
fDVar2 = fDVar1 ; double precision variables

The following instructions could be used:
movss xmm0, dword [fSVar1]
movss dword [fSVar2], xmm0 ; fSVar2 = fSVar1
movsd xmm1, qword [fDVar1]
movsd qword [fDVar2], xmm1 ; fDVar2 = fDVar1
movss xmm2, xmm0 ; xmm2 = xmm0 (32-bit)
movsd xmm3, xmm1 ; xmm3 = xmm1 (64-bit)

For some instructions, including those above, the explicit type specification (e.g., byte,
word, dword, qword) can be omitted as the other operand will clearly define the size. It
is included for consistency and good programming practices.

Page 265

Chapter 18.0 ◄ Floating-Point Instructions

 18.4 Integer / Floating-Point Conversion Instructions
If integer values are required during floating-point calculations, the integers must be
converted into floating-point values. If single precision and double precision floating-
point values are required for a series of calculations, they must be converted to single or
double so that the operations are performed on a consistent size/type.

Refer to Chapter 3 for a more detailed explanation of the representation details for
floating-point values. It is assumed the reader understands the representation details and
recognizes the requirement to ensure consistent formats before performing floating
operations.

This basic data conversion operations are performed with the convert instruction.

The floating-point conversion instructions are summarized as follows:

Instruction Explanation
 cvtss2sd <RXdest>, <src> Convert 32-bit floating-point source operand to

the 64-bit floating-point destination operand.
Note 1, destination operand must be floating-
point register.
Note 2, source operand cannot be an
immediate.

Examples: cvtss2sd xmm0, dword [fltSVar]
 cvtss2sd xmm3, eax
 cvtss2sd xmm3, xmm2

 cvtsd2ss <RXdest>, <src> Convert 64-bit floating-point source operand to
the 32-bit floating-point destination operand.
Note 1, destination operand must be floating-
point register.
Note 2, source operand cannot be an
immediate.

Examples: cvtsd2ss xmm0, qword [fltDVar]
 cvtsd2ss xmm1, rax
 cvtsd2ss xmm3, xmm2

Page 266

Chapter 18.0 ◄ Floating-Point Instructions

Instruction Explanation
 cvtss2si <reg>, <src> Convert 32-bit floating-point source operand to

the 32-bit integer destination operand.
Note 1, destination operand must be register.
Note 2, source operand cannot be an
immediate.

Examples: cvtss2si xmm1, xmm0
 cvtss2si eax, xmm0
 cvtss2si eax, dword [fltSVar]

 cvtsd2si <reg>, <src> Convert 64-bit floating-point source operand to
the 32-bit integer destination operand.
Note 1, destination operand must be register.
Note 2, source operand cannot be an
immediate.

Examples: cvtsd2si xmm1, xmm0
 cvtsd2si eax, xmm0
 cvtsd2si eax, qword [fltDVar]

 cvtsi2ss <RXdest>, <src> Convert 32-bit integer source operand to the
32-bit floating-point destination operand.
Note 1, destination operand must be floating-
point register.
Note 2, source operand cannot be an
immediate.

Examples: cvtsi2ss xmm0, eax
 cvtsi2ss xmm0, dword [fltDVar]

 cvtsi2sd <RXdest>, <src> Convert 32-bit integer source operand to the
64-bit floating-point destination operand.
Note 1, destination operand must be floating-
point register.
Note 2, source operand cannot be an
immediate.

Examples: cvtsi2sd xmm0, eax
 cvtsi2sd xmm0, dword [fltDVar]

A more complete list of the instructions is located in Appendix B.

Page 267

Chapter 18.0 ◄ Floating-Point Instructions

 18.5 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions perform arithmetic operations such as add,
subtract, multiplication, and division on single or double precision floating-point values.
The following sections present the basic arithmetic operations.

 18.5.1 Floating-Point Addition
The general form of the floating-point addition instructions are as follows:

addss <RXdest>, <src>
addsd <RXdest>, <src>

Where operation is as follows:
<RXdest> = <RXdest> + <src>

Specifically, the source and destination operands are added and the result is placed in
the destination operand (over-writing the previous value). The destination operand must
be a floating-point register. The source operand may not be an immediate value. The
value of the source operand is unchanged. The destination and source operand must be
of the same size (double-words or quadwords). If a memory to memory addition
operation is required, two instructions must be used.

For example, assuming the following data declarations:
fSNum1 dd 43.75
fSNum2 dd 15.5
fSAns dd 0.0
fDNum3 dq 200.12
fDNum4 dq 73.2134
fDAns dq 0.0

To perform the basic operations of:
fSAns = fSNum1 + fSNum2
fDAns = fDNum3 + fDNum4

The following instructions could be used:
; fSAns = fSNum1 + fSNum2
movss xmm0, dword [fSNum1]
addss xmm0, dword [fSNum2]
movss dword [fSAns], xmm0

Page 268

Chapter 18.0 ◄ Floating-Point Instructions

; fDAns = fDNum3 + fDNum4
movsd xmm0, qword [fDNum3]
addsd xmm0, qword [fDNum4]
movsd qword [fDAns], xmm0

For some instructions, including those above, the explicit type specification (e.g.,
dword, qword) can be omitted as the other operand or the instruction itself clearly
defines the size. It is included for consistency and good programming practices.

The floating-point addition instructions are summarized as follows:

Instruction Explanation
 addss <RXdest>, <src> Add two 32-bit floating-point operands,

(<RXdest> + <src>) and place the result in
<RXdest> (over-writing previous value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: addss xmm0, xmm3
 addss xmm5, dword [fSVar]

 addsd <RXdest>, <src> Add two 64-bit floating-point operands,
(<RXdest> + <src>) and place the result in
<RXdest> (over-writing previous value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: addsd xmm0, xmm3
 addsd xmm5, qword [fDVar]

A more complete list of the instructions is located in Appendix B.

 18.5.2 Floating-Point Subtraction
The general form of the floating-point subtraction instructions are as follows:

subss <RXdest>, <src>
subsd <RXdest>, <src>

Page 269

Chapter 18.0 ◄ Floating-Point Instructions

Where operation is as follows:
<RXdest> = <RXdest> - <src>

Specifically, the source and destination operands are subtracted and the result is placed
in the destination operand (over-writing the previous value). The destination operand
must be a floating-point register. The source operand may not be an immediate value.
The value of the source operand is unchanged. The destination and source operand must
be of the same size (double-words or quadwords). If a memory to memory addition
operation is required, two instructions must be used.

For example, assuming the following data declarations:
fSNum1 dd 43.75
fSNum2 dd 15.5
fSAns dd 0.0
fDNum3 dq 200.12
fDNum4 dq 73.2134
fDAns dq 0.0

To perform the basic operations of:
fSAns = fSNum1 - fSNum2
fDAns = fDNum3 - fDNum4

The following instructions could be used:
; fSAns = fSNum1 - fSNum2
movss xmm0, dword [fSNum1]
subss xmm0, dword [fSNum2]
movss dword [fSAns], xmm0
; fDAns = fDNum3 - fDNum4
movsd xmm0, qword [fDNum1]
subsd xmm0, qword [fDNum2]
movsd qword [fDAns], xmm0

For some instructions, including those above, the explicit type specification (e.g.,
dword, qword) can be omitted as the other operand or the instruction itself clearly
defines the size. It is included for consistency and good programming practices.

Page 270

Chapter 18.0 ◄ Floating-Point Instructions

The floating-point subtraction instructions are summarized as follows:

Instruction Explanation
 subss <RXdest>, <src> Subtract two 32-bit floating-point operands,

(<RXdest> - <src>) and place the result in
<RXdest> (over-writing previous value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: subss xmm0, xmm3
 subss xmm5, dword [fSVar]

 subsd <RXdest>, <src> Subtract two 64-bit floating-point operands,
(<RXdest> - <src>) and place the result in
<RXdest> (over-writing previous value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: subsd xmm0, xmm3
 subsd xmm5, qword [fDVar]

A more complete list of the instructions is located in Appendix B.

 18.5.3 Floating-Point Multiplication
The general form of the floating-point multiplication instructions are as follows:

mulss <RXdest>, <src>
mulsd <RXdest>, <src>

Where operation is as follows:
<RXdest> = <RXdest> * <src>

Specifically, the source and destination operands are multiplied and the result is placed
in the destination operand (over-writing the previous value). The destination operand
must be a floating-point register. The source operand may not be an immediate value.

Page 271

Chapter 18.0 ◄ Floating-Point Instructions

The value of the source operand is unchanged. The destination and source operand must
be of the same size (double-words or quadwords). If a memory to memory addition
operation is required, two instructions must be used.

For example, assuming the following data declarations:
fSNum1 dd 43.75
fSNum2 dd 15.5
fSAns dd 0.0
fDNum3 dq 200.12
fDNum4 dq 73.2134
fDAns dq 0.0

To perform the basic operations of:
fSAns = fSNum1 * fSNum2
fDAns = fDNum3 * fDNum4

The following instructions could be used:
; fSAns = fSNum1 * fSNum2
movss xmm0, dword [fSNum1]
mulss xmm0, dword [fSNum2]
movss dword [fSAns], xmm0
; fDAns = fDNum3 * fDNum4
movsd xmm0, qword [fDNum3]
mulsd xmm0, qword [fDNum4]
movsd qword [fDAns], xmm0

For some instructions, including those above, the explicit type specification (e.g.,
dword, qword) can be omitted as the other operand or the instruction itself clearly
defines the size. It is included for consistency and good programming practices.

Page 272

Chapter 18.0 ◄ Floating-Point Instructions

The floating-point multiplication instructions are summarized as follows:

Instruction Explanation
 mulss <RXdest>, <src> Multiply two 32-bit floating-point operands,

(<RXdest> * <src>) and place the result in
<RXdest> (over-writing previous value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: mulss xmm0, xmm3
 mulss xmm5, dword [fSVar]

 mulsd <RXdest>, <src> Multiply two 64-bit floating-point operands,
(<RXdest> * <src>) and place the result in
<RXdest> (over-writing previous value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: mulsd xmm0, xmm3
 mulsd xmm5, qword [fDVar]

A more complete list of the instructions is located in Appendix B.

 18.5.4 Floating-Point Division
The general form of the floating-point division instructions are as follows:

divss <RXdest>, <src>
divsd <RXdest>, <src>

Where operation is as follows:
<RXdest> = <RXdest> / <src>

Specifically, the source and destination operands are divided and the result is placed in
the destination operand (over-writing the previous value). The destination operand must
be a floating-point register. The source operand may not be an immediate value. The
value of the source operand is unchanged. The destination and source operand must be

Page 273

Chapter 18.0 ◄ Floating-Point Instructions

of the same size (double-words or quadwords). If a memory to memory addition
operation is required, two instructions must be used.

For example, assuming the following data declarations:
fSNum1 dd 43.75
fSNum2 dd 15.5
fSAns dd 0.0
fDNum3 dq 200.12
fDNum4 dq 73.2134
fDAns dq 0.0

To perform the basic operations of:
fSAns = fSNum1 / fSNum2
fDAns = fDNum3 / fDNum4

The following instructions could be used:
; fSAns = fSNum1 / fSNum2
movss xmm0, dword [fSNum1]
divss xmm0, dword [fSNum2]
movss dword [fSAns], xmm0
; fDAns = fDNum3 / fDNum4
movsd xmm0, qword [fDNum3]
divsd xmm0, qword [fDNum4]
movsd qword [fDAns], xmm0

For some instructions, including those above, the explicit type specification (e.g.,
dword, qword) can be omitted as the other operand or the instruction itself clearly
defines the size. It is included for consistency and good programming practices.

The floating-point division instructions are summarized as follows:

Instruction Explanation
 divss <RXdest>, <src> Divide two 32-bit floating-point operands,

(<RXdest> / <src>) and place the result in
<RXdest> (over-writing previous value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Page 274

Chapter 18.0 ◄ Floating-Point Instructions

Instruction Explanation

Examples: divss xmm0, xmm3
 divss xmm5, dword [fSVar]

 divsd <RXdest>, <src> Divide two 64-bit floating-point operands,
(<RXdest> / <src>) and place the result in
<RXdest> (over-writing previous value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: divsd xmm0, xmm3
 divsd xmm5, qword [fDVar]

A more complete list of the instructions is located in Appendix B.

 18.5.5 Floating-Point Square Root
The general form of the floating-point square root instructions are as follows:

sqrtss <RXdest>, <src>
sqrtsd <RXdest>, <src>

Where operation is as follows:

<dest> = √ <src>

Specifically, the square root of the source operand is placed in the destination operand
(over-writing the previous value). The destination operand must be a floating-point
register. The source operand may not be an immediate value. The value of the source
operand is unchanged. The destination and source operand must be of the same size
(double-words or quadwords). If a memory to memory addition operation is required,
two instructions must be used.

For example, assuming the following data declarations:
fSNum1 dd 1213.0
fSAns dd 0.0
fDNum3 dq 172935.123
fDAns dq 0.0

Page 275

Chapter 18.0 ◄ Floating-Point Instructions

To perform the basic operations of:

fSAns = √ fSNum1
fDAns = √ fSNum3

The following instructions could be used:
; fSAns = sqrt (fSNum1)
sqrtss xmm0, dword [fSNum1]
movss dword [fSAns], xmm0
; fDAns = sqrt(fDNum3)
sqrtsd xmm0, qword [fDNum3]
movsd qword [fDAns], xmm0

For some instructions, including those above, the explicit type specification (e.g.,
dword, qword) can be omitted as the other operand or the instruction itself clearly
defines the size. It is included for consistency and good programming practices.

The floating-point addition instructions are summarized as follows:

Instruction Explanation
 sqrtss <RXdest>, <src> Take the square root of the 32-bit floating-

point source operand and place the result in
destination operand (over-writing previous
value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: sqrtss xmm0, xmm3
 sqrtss xmm7, dword [fSVar]

Page 276

Chapter 18.0 ◄ Floating-Point Instructions

Instruction Explanation
 sqrtsd <RXdest>, <src> Take the square root of the 64-bit floating-

point source operand and place the result in
destination operand (over-writing previous
value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: sqrtsd xmm0, xmm3
 sqrtsd xmm7, qword [fDVar]

A more complete list of the instructions is located in Appendix B.

 18.6 Floating-Point Control Instructions
The control instructions refer to programming constructs such as IF statements and
looping. The integer comparison instruction, cmp, as described in Chapter 7 will not
work for floating-point values.

The floating-point comparison instructions compare two floating-point values. Like the
integer comparisons, the result of the comparison is stored in the rFlag register and
neither operand is changed. Immediately after the comparison, the rFlag register is
accessed to determine the results by using a conditional jump instruction. While all
floating-point comparisons are signed, an unsigned conditional jump is used
(ja/jae/jb/jbe). Program labels (i.e., a target of a conditional jump) are the same.

There are two forms of the floating-point comparison, ordered and unordered. The
ordered floating-point comparisons can cause a number of exceptions. The unordered
floating-point comparisons can only cause an exception for a S-NaN (signaling not a
number), more generically referred to as a NaN (not a number) as described in Chapter
3, Data Representation.

The GNU C/C++ compiler favors the unordered floating-point compare instruction.
Since they are similar, this text will focus only on the unordered version.

 18.6.1 Floating-Point Comparison
The general form of the floating-point comparison instructions are as follows:

Page 277

Chapter 18.0 ◄ Floating-Point Instructions

ucomiss <RXsrc>, <src>
ucomisd <RXsrc>, <src>

Where <RXsrc> and <src> are compared as floating-point values and must be the same
size. The results of the comparison are placed in the rFlag register. Neither operand is
changed. The <RXsrc> operand must be one of the xmm registers. The <src> register
can be a xmm register or a memory location, but may not be an immediate value. One
of the unsigned conditional jump instructions can be used to read the rFlag register.

The conditional control instructions include the jump equal (je) and jump not equal
(jne). The unsigned conditional control instructions include the basic set of comparison
operations; jump below than (jb), jump below or equal (jbe), jump above than (ja), and
jump above or equal (jae).

The general form of the signed conditional instructions along with an explanatory
comment are as follows:

je <label> ; if <op1> == <op2>
jne <label> ; if <op1> != <op2>
jb <label> ; unsigned, if <op1> < <op2>
jbe <label> ; unsigned, if <op1> <= <op2>
ja <label> ; unsigned, if <op1> > <op2>
jae <label> ; unsigned, if <op1> >= <op2>

For example, given the following pseudo-code for floating-point variables:
if (fltNum > fltMax)

fltMax = fltNum;

And, given the following data declarations:
fltNum dq 7.5
fltMax dq 5.25

Then, assuming that the values are updating appropriately within the program (not
shown), the following instructions could be used:

movsd xmm1, qword [fltNum]
ucomisd xmm1, qword [fltMax] ; if fltNum <= fltMax
jbe notNewFltMax ; skip set new max
movsd qword [fltMax], xmm1

 notNewFltMax:

Page 278

Chapter 18.0 ◄ Floating-Point Instructions

As with integer comparisons, the floating-point compare and conditional jump provide
functionality for jump or not jump. As such, if the condition from the original IF
statement is false, the code to update the fltMax should not be executed. Thus, when
false, in order to skip the execution, the conditional jump will jump to the target label
immediately following the code to be skipped (not executed). While there is only one
line in this example, there can be many lines of code.

A more complex example might be as follows:
if (x != 0.0) {

ans = x / y;
errFlg = FALSE;

} else {
errFlg = TRUE;

}

This basic compare and conditional jump does not provide and IF-ELSE structure. It
must be created. Assuming the x and y variables are signed double-words that will be
set during the program execution, and the following declarations:

TRUE equ 1
FALSE equ 0
fltZero dq 0.0
x dq 10.1
y dq 3.7
ans dq 0.0
errFlg db FALSE

The following code could be used to implement the above IF-ELSE statement.
movsd xmm1, qword [x]
ucomisd xmm1, qword [fltZero] ; if statement
je doElse
divsd xmm1, qword [y]
movsd dword [ans], eax
mov byte [errFlg], FALSE
jmp skpElse

doElse:
mov byte [errFlg], TRUE

skpElse:

Page 279

Chapter 18.0 ◄ Floating-Point Instructions

Floating-point comparisons can be very tricky due to the inexact nature of the floating-
point representations and rounding errors. For example, the value 0.1 added 10 times
should be 1.0. However, implementing a program to perform this summation and
checking the result, will show that;

∑
i=1

10

0.1 ≠ 1.0

which can be very confusing for inexperienced programmers.

For more information regarding the details of floating-point, refer to the popular article
What Every Computer Scientist Should Know About Floating-Point Arithmetic50.

The floating-point comparison instructions are summarized as follows:

Instruction Explanation
 ucomiss <RXsrc>, <src> Compare two 32-bit floating-point operands,

(<RXsrc> + <src>). Results are placed in the
rFlag register. Neither operand is changed.
Note 1, <RXsrc> operands must be a floating-
point register.
Note 2, source operand may be a floating-point
register or memory, but not be an immediate.

Examples: ucomiss xmm0, xmm3
 ucomiss xmm5, dword [fSVar]

 ucomisd <RXsrc>, <src> Compare two 64-bit floating-point operands,
(<RXsrc> + <src>). Results are placed in the
rFlag register. Neither operand is changed.
Note 1, <RXsrc> operands must be a floating-
point register.
Note 2, source operand may be a floating-point
register or memory, but not be an immediate.

Examples: ucomisd xmm0, xmm3
 ucomisd xmm5, qword [fSVar]

A more complete list of the instructions is located in Appendix B.

50 See: http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Page 280

Chapter 18.0 ◄ Floating-Point Instructions

 18.7 Floating-Point Calling Conventions
The standard calling conventions detailed in Chapter 12, Functions still fully apply.
This section addresses the usage of the floating-point registers when calling floating-
point functions.

When using floating-point registers, none of the registers are preserved across a
floating-point function call.

The first eight (8) floating-point arguments are passed in floating-point registers xmm0
– xmm7. Any additional arguments are placed on the stack in backwards order in the
manner described in Chapter 12, Functions. A value returning floating-point function
will return the result in xmm0.

Since none of the floating-point registers are preserved, the code must be written
carefully.

 18.8 Example Program, Sum and Average
This example is a simple assembly language program to calculate the sum and average
for a list of floating-point values.

; Floating-Point Example Program
; ***
section .data
; -----
; Define constants.
NULL equ 0 ; end of string
TRUE equ 1
FALSE equ 0
EXIT_SUCCESS equ 0 ; Successful operation
SYS_exit equ 60 ; system call code for terminate
; -----
fltLst dq 21.34, 6.15, 9.12, 10.05, 7.75

dq 1.44, 14.50, 3.32, 75.71, 11.87
dq 17.23, 18.25, 13.65, 24.24, 8.88

length dd 15

Page 281

Chapter 18.0 ◄ Floating-Point Instructions

lstSum dq 0.0
lstAve dq 0.0
; ***
section .text
global _start
_start:
; -----
; Loop to find floating-point sum.

mov ecx, [length]
mov rbx, fltLst
mov rsi, 0
movsd xmm1, qword [lstSum]

sumLp:
movsd xmm0, qword [rbx+rsi*8] ; get fltLst[i]
addsd xmm1, xmm0 ; update sum
inc rsi ; i++
loop sumLp
movsd qword [lstSum], xmm1 ; save sum

; -----
; Compute average of entire list.

cvtsi2sd xmm0, dword [length]
cvtsd2si dword [length], xmm0
divsd xmm1, xmm0
movsd qword [lstAve], xmm1

; -----
; Done, terminate program.
last:

mov rax, SYS_exit
mov rbx, EXIT_SUCCESS ; exit w/success
syscall

The debugger can be used to examine the results and verify correct execution of the
program.

Page 282

Chapter 18.0 ◄ Floating-Point Instructions

 18.9 Example Program, Absolute Value
This example is a simple assembly language program to find the absolute value of a
floating-point value in order to demonstrate floating-point comparisons. Recall that if a
value is negative, it must be made positive and if the value is already positive, nothing
should be done.

; Floating-Point Absolute Value Example
section .data
; -----
; Define constants.
TRUE equ 1
FALSE equ 0
SUCCESS equ 0 ; successful operation
SYS_exit equ 60 ; call code for terminate
; -----
; Define some test variables.
dZero dq 0.0
dNegOne dq -1.0
fltVal dq -8.25
; ***
section .text
global _start
_start:
; -----
; Perform absolute value function on flt1

movsd xmm0, qword [fltVal]
ucomisd xmm0, qword [dZero]
jae isPos
mulsd xmm0, qword [dNegOne]
movsd qword [fltVal], xmm0

isPos:

Page 283

Chapter 18.0 ◄ Floating-Point Instructions

; -----
; Done, terminate program.
last:

mov rax, SYS_exit
mov rbx, EXIT_SUCCESS ; exit w/success
syscall

In this example, the final result for |fltVal| was saved to memory. Depending on the
context, this may not be required.

 18.10 Exercises
Below are some quiz questions and suggested projects based on this chapter.

 18.10.1 Quiz Questions
Below are some quiz questions based on this chapter.

1) List the floating-point registers.

2) How many bytes are used by single precision floating-point values and how
many bytes are used for double precision floating-point values?

3) Explain why 0.1 added 10 times does not equal 1.0.

4) Where is the result of a value returning floating-point function such as sin(x)
returned?

5) For a value returning floating-point function, which floating-point registers must
be preserved across the function call?

 18.10.2 Suggested Projects
Below are some suggested projects based on this chapter.

1) Implement the example program to find the sum and average for a list of
floating-point values. Use the debugger to execute the program and verify the
final results.

2) Implement the floating-point absolute value function as two macros, one fAbsf
for 32-bit floating-point values and fAbsd for 64-bit floating-point values.
Create a simple main program that uses each macro three times on various
different values. Use the debugger to execute the program and verify the results.

Page 284

Chapter 18.0 ◄ Floating-Point Instructions

3) Implement a program to perform the summation:

∑
i=1

10

0.1

Compare the results of the summation to the value 1.0 and display a message
“Are Same” if the summation result equals 1.0 and the message “Are Not Same”
if the result of the summation does not equal 1.0. Use the debugger as needed to
debug the program. When working, execute the program without the debugger
and verify that the expected results are displayed to the console.

Page 285

Chapter 18.0 ◄ Floating-Point Instructions

Page 286

 19.0 Parallel Processing
In the context of computing, parallel processing51, or more generically concurrency52,
refers to multiple processes appearing to execute simultaneously.

In broad terms, concurrency implies multiple different (not necessarily related)
processes simultaneously making progress. This can be accomplished in multiple ways.
For example, process A could be executing on core 0 while process B is simultaneously
executing on core 1 thus executing in parallel. Another possibility is that the execution
of process A and B could be interleaved on a single core where process A might execute
for a period of time and then be paused while process B is then executed for a period of
time and then paused while process A is resumed. This continues until either or both are
completed. If this interleaved execution is performed often and fast enough it will
appear that each is executing simultaneously.

The term parallel processing implies that processes are executing simultaneously. These
processes may be unrelated or working together as a coordinated unit to solve a single
complex problem.

This chapter provides an overview of some basic approaches to parallel processing as
applied to a single problem. Assume that a large problem can be divided into various
sub-problems and those sub-problems can be executed independently. The sub-
solutions would be brought together to provide a final solution for the problem. If the
sub-problems can be executed simultaneously, a final solution might be found
significantly faster than if the sub-problems are executed in series (one after another).
The potential rewards for implementing concurrency are significant but so are the
challenges. Unfortunately, not all problems can be easily divided into such sub-
problems.

51 For more information, refer to: http://en.wikipedia.org/wiki/Parallel_processing
52 For more information, refer to: http://en.wikipedia.org/wiki/Concurrency_(computer_science)

Page 287

Chapter
19

#define QUESTION ((bb) || !(bb))
- Shakespeare

Chapter 19.0 ◄ Parallel Processing

The basic approaches to parallel processing are distributed computing53 and
multiprocessing54 (also referred to as threaded computations). Each approach is
explained with an emphasis on the technical issues associated with shared memory
multiprocessing. The larger topic of learning to create parallel algorithms is outside the
scope of this text.

 19.1 Distributed Computing
Distributed computing or distributed processing refers to the general idea of taking a
large problem, dividing it into multiple sub-problems, and executing the sub-problems
on different computers connected through a network. Typically, a master or main server
node will distribute the sub-problems to various available computation nodes. When
completed, the computational nodes will send the intermediate results back to the
master. As needed, the master may send additional sub-problems to the computational
nodes. The master will also track and combine the intermediate results into a final
solution. The details of how this is actually performed vary significantly and are
directly related to the specifics of the problem.

There are many large scale examples of distributed computing projects55. One such
project is Folding@home56 which is a large distributed computing project for disease
research that simulates protein folding, computational drug design, and other types of
molecular dynamics. The project uses the idle processing resources of well over
100,000 different personal computers owned by volunteers who have installed the
software on their systems.

This approach has the advantage of scaling to very large number of distributed
computers. The disadvantages are associated with the communication limitations
associated with the network.

 19.2 Multiprocessing
As noted in Chapter 2, Architecture Overview, most current CPU chips include multiple
cores. The CPU cores all have equal access to the main memory resource.
Multiprocessing is a form of parallel processing that specifically refers to using multiple
cores to perform simultaneous execution of multiple processes.

53 For more information, refer to: http://en.wikipedia.org/wiki/Distributed_computing
54 For more information, refer to: http://en.wikipedia.org/wiki/Multiprocessing
55 For more information, refer to: http://en.wikipedia.org/wiki/List_of_distributed_computing_projects
56 For more information, refer to: http://en.wikipedia.org/wiki/Folding@home

Page 288

Chapter 19.0 ◄ Parallel Processing

Focusing on a single large project, a main or initial process might generate sub-
processes, referred to as threads57. When the initial process is started and placed in
memory by the system loader58, the Operating System creates a new process including
the required Operating System data structures, memory allocations, and page/swap file
allotments. A thread is often referred to as a light-weight process since it will use the
initial process’s allocations and address space thus making it quicker to create. It will
also be quicker to terminate as the deallocations are not performed. Since the threads
share memory with the initial process and any other threads, this presents the potential
for very fast communication between simultaneously executing threads. It also has the
added requirement that the communications in the form of memory writes be carefully
coordinated to ensure results are not corrupted. Such a problem is referred to as a race
condition59. Race conditions are addressed in the following section.

The threaded approach will not scale to the extent of the distributed approach. CPU
chips have a limited number of cores which places an upper bound on the number of
simultaneous computations that can occur. This limit does not apply to distributed
computing. The limitations regarding network communication speeds do not apply to
threaded computations.

 19.2.1 POSIX Threads
POSIX Threads60, commonly called pThreads, is a widely available thread library on
Ubuntu and many other operating systems. The example in this section will use the
pThreads thread library Application Programmer Interface (API) for creating and
joining threads.

The initial or main process is created during the load process. The main process may
create additional threads with the pthread_create() library function. While there is
no specific limit to the number of threads that can be created, there is a limit to the
number of cores available thus creating a practical limit for the number of threads.

The initial or main process can see if the thread has completed with the
pthread_join() library function. If the thread has not completed, the join function
will wait until it does. Ideally, in order to maximize the overall parallel operations, the
main process would perform other computations while the thread or threads are
executing and only check for thread completion when the other work has been
completed.

57 For more information, refer to: http://en.wikipedia.org/wiki/Thread_(computing)
58 For more information, refer to Chapter 5, Tool Chain
59 For more information, refer to: http://en.wikipedia.org/wiki/Race_condition
60 For more information, refer to: http://en.wikipedia.org/wiki/POSIX_Threads

Page 289

Chapter 19.0 ◄ Parallel Processing

There are other pThread functions to address mutexes61, condition variables, and
synchronization62 between threads which are not addressed in this very brief overview.

It should be noted that there are other approaches to threading not addressed here.

 19.2.2 Race Conditions
A race condition is a generic term referring to when multiple threads simultaneously
write to the same location at the same time. Threaded programming is typically done in
a high-level language. However, fully understanding the specific cause of a race
condition is best done at the assembly language level.

A simple example is provided to purposely create a race condition and examine the
problem in detail. This example is not computationally useful.

Assuming we wish to compute the following formula MAX times, where MAX is a
defined constant. For example;

myValue = (myValue
X) + Y

We could write a high-level language program something along the lines of:

for (int i=0; i < MAX; i++)
myValue = (myValue / X) + Y;

If we wish to speed-up this computation, perhaps because MAX is extremely large, we
might create two thread functions, each to perform MAX/2 computations. Each of the
thread functions would have shared access to the variables myValue, X, and Y. Thus,
the code might be;

for (int i=0; i < MAX/2; i++)
myValue = (myValue / X) + Y;

This code would be repeated in each of the thread functions. It may not be obvious, but
assuming both threads are simultaneously executing, this will cause a race condition on
the myValue variable. Specifically, each of the two threads are attempting to update the
variable simultaneously and some of the updates to the variable may be lost.

61 For more information, refer to: http://en.wikipedia.org/wiki/Mutual_exclusion
62 For more information, refer to: http://en.wikipedia.org/wiki/Synchronization_(computer_science)

Page 290

Chapter 19.0 ◄ Parallel Processing

To further simplify this example, we will assume that X and Y are both set to 1. As
such, the result of each calculation would be to increment myValue by 1. If myValue is
initialized to 0, repeating the calculation MAX times, should result in myValue being set
to MAX. This simplification will allow easy verification of the results. It is not
computationally useful in any meaningful way.

Implementing this in assembly would first require a main program that creates each of
the two threads. Then, each of the thread functions would need to be created. In this
very simple example, each thread function would be the same (performing MAX/2
iterations and that MAX is an even number).

Assuming one of the thread functions is named threadFunction0() and given the below
pThread thread data structure;

pthreadID0 dd 0, 0, 0, 0, 0

The following code fragment would create and start threadFunction0() executing.

; pthread_create(&pthreadID0, NULL,
; &threadFunction0, NULL);

mov rdi, pthreadID0
mov rsi, NULL
mov rdx, threadFunction0
mov rcx, NULL
call pthread_create

This would need to be performed for each thread function.

The following code fragment will check if a thread function is completed;

; pthread_join (pthreadID0, NULL);
mov rdi, qword [pthreadID0]
mov rsi, NULL
call pthread_join

If the thread function is not done, the join call will wait until it is completed.

The thread function, threadFunction0(), itself might contain the following code;

; -----
global threadFunction0
threadFunction0:
; Perform MAX / 2 iterations to update myValue.

Page 291

Chapter 19.0 ◄ Parallel Processing

mov rcx, MAX
shr rcx, 1 ; divide by 2
mov r10, qword [x]
mov r11, qword [y]

incLoop0:
; myValue = (myValue / x) + y
mov rax, qword [myValue]
cqo
div r10
add rax, r11
mov qword [myValue], rax
loop incLoop0
ret

The code for the second thread function would be similar.

If both threads are simultaneously executing, they are both trying to update the myValue
variable. For example, assuming that thread function 0 is executing on core 0 and
thread function 1 is executing on core 1 (arbitrarily chosen), the following execution
trace is possible;

Step Code: Core 0, Thread 0 Code: Core 1, Thread 1
1 mov rax, qword [myValue]
2 cqo mov rax, qword [myValue]
3 div qword [x] cqo
4 add rax, qword [y] div qword [x]
5 mov qword [myValue], rax add rax, qword [y]
6 mov qword [myValue], rax

As a reminder, each core has its own set of registers. Thus, the core 0 rax register is
different than the core 1 rax register.

If the variable myValue is currently at 730, two thread executions should increase it to
732. On core 0 code, at step 1 the 730 is copied into core 0, rax. On core 1, at step 2,
the 730 is copied into core 1, rax. As execution progresses, steps 2-4 are performed and
core 0 rax is incremented from 730 to 731. During this time, on core 1, steps 1-3 are

Page 292

Chapter 19.0 ◄ Parallel Processing

completed and the 730 is also incremented to 731. As the next step, step 5, is executed
on core 0, the 731 is written to the myValue variable. As the next step, step 6 is
executed on core 1, the value 731 is again written to the myValue variable. Two
execution traces should have incremented the variable twice. However, since the value
was obtained in core 1 before core 0 was able to write the final value, one of the
increments was lost or duplicated. The end result of this overlap is that the final value
of myValue will not be correct. And, since the amount of overlapping execution is not
predictable, the degree of incorrectness is not easily predicted and may vary between
different executions.

For example, if the value of MAX is fairly small, such as 10,000, there would not likely
be any overlap. Each thread would start and complete so quickly, that the chances of
overlapping execution would be very small. The problem still exists but would likely
appear mostly correct on such executions, making it easy to ignore occasional
anomalous output. As MAX is increased, the odds of overlapping execution increase.

Such problems can be very challenging to debug and require an understanding of the
low-level operations and the technical architecture.

 19.3 Exercises
Below are some quiz questions and suggested projects based on this chapter.

 19.3.1 Quiz Questions
Below are some quiz questions based on this chapter.

1) Explain the difference between concurrency and parallel processing.

2) Name the two common approaches to parallel computations.

3) In distributed processing, where might the parallel computations take place?

4) Provide the names of two examples of large distributed computing projects.
Include a one-sentence description of each.

5) In multiprocessing, where might the parallel computations take place?

6) Provide one advantage and one disadvantage of the distributed computing
approach to parallel processing.

7) Provide one advantage and one disadvantage of the multiprocessing approach to
parallel processing.

8) Explain what a race condition is.

Page 293

Chapter 19.0 ◄ Parallel Processing

9) Will a race condition occur when a shared variable is read by multiple
simultaneously executing threads? Explain why or why not.

10) Will a race condition occur when a shared variable is written by multiple
simultaneously executing threads (without any coordination)? Explain why or
why not.

 19.3.2 Suggested Projects
Below are some suggested projects based on this chapter.

1) Implement the outlined example program and create two thread functions where
each thread function computes the formula MAX/2 times. Set MAX to
1,000,000,000 (one billion).

1. Initially, structure the main function to call the first thread function and wait
until it completes until creating the second thread function and waiting until
it completes. This will force the threads to execute sequentially (not in
parallel). Include a function to convert the integer into a string and display
the result to the console. Use the debugger as necessary to debug the
program. When working, execute the program without the debugger and
verify that the displayed results are the same as MAX.

2. Use the Unix time63 command to establish a base execute time. Record the
total elapsed time.

3. Restructure the program so that both threads are created and then waiting for
both to complete. This will allow the execution of the threads to occur in
parallel. Use the debugger as necessary to debug the program. When
working, execute the program without the debugger and note the final value
of MAX. Ensure a full understanding of why the displayed value for MAX
is incorrect. Additionally, use the Unix time command on the modified
program to verify that it uses less elapsed time.

2) Update the program from the previous question to resolve the race condition.
Use the debugger as necessary to debug the program. One very simple way to
accomplish this is to use temporary variables for each thread and combine them
after both thread functions have completed and display the final combined result.
When working, execute the program without the debugger and verify that the
displayed results for results is the same as MAX.

63 For more information, refer to: http://en.wikipedia.org/wiki/Time_(Unix)

Page 294

 20.0 Interrupts
In a general sense, an interrupt64 is a pause or hold in the current flow. For example, if
you are talking on the phone and the doorbell rings, the phone conversation is placed on
hold, and the door answered. After the salesperson is sent away, the phone conversation
is resumed (where the conversation left off).

In computer programming, an interrupt is also a pause, or hold, of the currently
executing process. Typically, the current process is interrupted so that some other work
can be performed. An interrupt is usually defined as an event that alters the sequence of
instructions executed by a processor. Such events correspond to signals generated by
software and/or hardware. For example, most Input/Output (I/O) devices generate an
interrupt in order to transmit or receive data. Software programs can also generate
interrupts to initiate I/O as needed, request OS services, or handle unexpected
conditions.

Handling interrupts is a sensitive task. Interrupts can occur at any time; the kernel tries
to get the interrupt addressed as soon as possible. Additionally, an interrupt can be
interrupted by another interrupt.

 20.1 Multi-user Operating System
A modern multi-user Operating System (OS) supports multiple programs executing, or
appearing to be executing, simultaneously by sharing resources as necessary. The OS is
responsible for managing and sharing the resources. These resources include the CPU
cores, primary memory (i.e., RAM), secondary storage (i.e., disk or SSD), display
screen, keyboard, and mouse. For example, multiple programs must share the available
CPU resources (core or cores as applicable).

The interrupt mechanism is the primary means that the OS uses in order to provide the
resource sharing. Consequently, understanding how interrupts are processed by the

64 For more information, refer to: http://en.wikipedia.org/wiki/Interrupt

Page 295

Chapter
20

If a program is useful, it must be changed.
If a program is useless, it must be
documented.

Chapter 20.0 ◄ Interrupts

computer provides insight into how the operating system is able to provide multi-
processing functions. When an interrupt occurs, the current process is interrupted (i.e.,
placed on hold), the interrupt is handled (which depends on the specific reason for the
interrupt), and then eventually the process is resumed. The OS may choose to perform
other tasks or processes before the original process is resumed. The interrupt is handled
by a special software routine called an Interrupt Service Routine (also called Interrupt
Handler, Device Driver, etc.). By using interrupts and quickly switching between
various processes, the OS is able to provide the illusion that all processes are executing
simultaneously.

Not all code can be interrupted. For example, due to the nature of some operating
system kernel functions, there are regions in the kernel which must not be interrupted at
all. This includes updating some sensitive operating system data structures.

 20.1.1 Interrupt Classification
To better understand interrupts and interrupt processing, some background on the timing
and categories of interrupts is useful.

 20.1.2 Interrupt Timing
The timing of interrupts may occur synchronously or asynchronously. These terms are
fairly common terms in computer processing and are explained in the following
sections.

 20.1.2.1 Asynchronous Interrupts

In the context of computer interrupts, an asynchronously occurring interrupt means that
the interrupt may occur at an arbitrary time with respect to program execution.
Asynchronous interrupts are unpredictable relative to any specific location within the
executing process. For example, an external hardware device might interrupt the
currently executing process at an unpredictable location.

 20.1.2.2 Synchronous Interrupts

Synchronously occurring interrupts typically occur while under CPU control and are
caused by or on behalf of the currently executing process. The synchronous nature is
related to where the interrupt occurs and not a specific clock time or CPU cycle time.
Synchronous interrupts typically reoccur at the same location (assuming nothing has
changed to resolve the original cause).

Page 296

Chapter 20.0 ◄ Interrupts

 20.1.3 Interrupt Categories
Interrupts are typically categorized as hardware or software.

 20.1.3.1 Hardware Interrupt

Hardware interrupts are typically generated by hardware. Hardware interrupts can be
issued by

• I/O devices (keyboard, network adapter, etc.)

• Interval timers

• Other CPUs (on multiprocessor systems)

Hardware interrupts are asynchronously occurring. An example of a hardware interrupt
is when a key is typed on the keyboard. The OS cannot know ahead of time when, or
even if, the key will be pressed. To handle this situation, the keyboard support hardware
will generate an interrupt. If the OS is executing an unrelated program, that program is
temporarily interrupted while the key is processed. In this example, that specific
processing consists of storing the key in a buffer and returning to the interrupted
process. Ideally, this brief interruption will have little impact in the interrupted process.

 20.1.3.1.1 Exceptions

An exception is a term for an interrupt that is caused by the current process and needs
the attention of the kernel. Exceptions are synchronously occurring. In this context,
synchronous implies that the exception will occur in a predictable or repeatable manner.

Exceptions are typically divided into categories as follows:

• Faults

• Traps

• Abort

An example of a fault is a page fault which is a request for loading part of the program
from disk storage into memory. The interrupted process restarts with no loss of
continuity.

A trap is typically used for debugging. The process restarts with no loss of continuity.

An abort is typically an indication that a serious error condition occurred and must be
handled. This includes division by zero, attempt to access an invalid memory address,
or attempt to execute an invalid/illegal instruction. An illegal instruction might be an
instruction that is only allowed to be executed by privileged/authorized processes. An

Page 297

Chapter 20.0 ◄ Interrupts

invalid instruction might be caused by attempting to execute a data item (which will not
make sense). Based on the severity of the error condition, the process is often
terminated. If the process is not terminated, another routine may be executed to attempt
to resolve the problem and re-execute the original routine (but not necessarily from the
interrupted location). The C/C++/Java try/catch block is an example of this.

It must be noted that there is not an absolute agreed upon definition for these terms.
Some texts use slightly different terminology.

 20.1.3.2 Software Interrupts

A software interrupt is produced by the CPU while processing instructions. This is
typically a programmed exception explicitly requested by the programmer. Such
interrupts are typically synchronously occurring and often used to request system
services from the OS. For example, requesting system services such as I/O.

 20.2 Interrupt Types and Levels
Interrupts have various types and privileges associated with them. The following
sections provide an explanation of the types and privileges. Interrupted processes may
execute at a lower privilege than the interrupt processing code. In order for interrupts to
be effective, the OS must securely handle this privilege escalation and deescalation
securely and quickly.

 20.2.1 Interrupt Types
The two different types or kinds of interrupts are:

• Maskable interrupts

• Non-maskable interrupts

Maskable interrupts are typically issued by I/O devices. As the name 'maskable'
implies, maskable interrupts can be ignored, or masked, for a short time period. This
allows the associated interrupt processing to be delayed.

Non-maskable interrupts (NMI's) must be handled immediately. This includes some OS
functions and critical malfunctions such as hardware failures. Non-maskable interrupts
are always processed by the CPU.

Page 298

Chapter 20.0 ◄ Interrupts

 20.2.2 Privilege Levels
Privilege Levels refer to the privilege level at which the interrupt code executes. This
may be a higher privilege level than the interrupted code is executing. The processor
executes code in one of four privilege levels as follows:

Level Description

Level 0 Full access to all hardware resources (no restrictions).
Used by only the lowest level OS functions.

Level 1 Somewhat restricted access to hardware resources. Used
by library routines and software that interacts with
hardware.

Level 2 More restricted access to hardware resources. Used by
library routines and software that has limited access to
some hardware.

Level 3 No direct access to hardware resources. Application
programs run at this level.

Should an application program executing at level 3 be interrupted by a hardware
interrupt for the keyboard, the keyboard interrupt handler must execute at level 0.

Page 299

Chapter 20.0 ◄ Interrupts

The following diagram shows the relationship of the levels.

The operating system interrupt processing mechanism will handle this privilege
elevation and restoration in a secure manner. That requires that the interrupt source and
privileges be verified as part of the interrupt handling mechanism.

 20.3 Interrupt Processing
When an interrupt occurs, it must be handled or processed securely, quickly, and
correctly. The general idea is that when the currently executing process is interrupted it
must be placed on hold, and the appropriate interrupt handling code found and executed.
The specific interrupt processing required depends on the cause or purpose of the
interrupt. Once the interrupt is serviced, the original process execution will eventually
be resumed.

 20.3.1 Interrupt Service Routine (ISR)
The code that is executed in response to an interrupt is typically called an Interrupt
Service Routine or ISR. The code is sometimes referred to as interrupt handler, handler,
service routine, or ISR code. For consistency, this document will use the term ISR.

Page 300

Illustration 29: Privilege Levels

Level 0

Level 1

Level 2

Level 3

Chapter 20.0 ◄ Interrupts

ISR code is challenging to develop due to the issues related to the concurrency and race
conditions. Additionally, it is difficult to isolate problems and debug ISR code.

 20.3.2 Processing Steps
The general steps involved in processing an interrupt are outlined in the following
sections.

 20.3.2.1 Suspension

Execution of the current program is suspended. As a minimum, this requires saving the
rip and rFlags registers to system stack. The remaining registers are likely to be
preserved (as a further step), depending on the specific interrupt. The rFlags flag
register must be preserved immediately since the interrupt may have been generated
asynchronously and those registers will change as successive instructions are executed.
This multi-stage process ensures that the program context can be fully restored.

 20.3.2.2 Obtaining ISR Address

The ISR addresses are stored in a table referred to as an Interrupt Descriptor Table65

(IDT). For each ISR, the IDT contains the ISR address and some additional information
including task gate (priority and privilege information) for the ISR. Each entry in the
IDT is a total of 8 bytes for a total of 16 bytes per IDT entry. There is a maximum of
256 (0-255) possible entries in the IDT.

To obtain the starting address of an ISR, the interrupt number is multiplied by 16 (since
each entry is 16 bytes) which is used as offset into the IDT where the ISR address is
obtained (for that interrupt).

The start of the IDT is pointed to by a dedicated register, IDTR, which is only accessible
by the OS and requires level 0 privilege to access.

The addresses of the ISR routines are specific to the OS version and the specific
hardware complement of the system. The IDT is created when the system initially boots
and reflects the specific system configuration. This is critical in order for the OS to
work correctly and consistently on different system hardware configurations.

 20.3.2.3 Jump to ISR

Once the ISR address is obtained from the IDT some validation is performed. This
includes ensuring the interrupt is from a legal/valid source and if a privilege level
change is required and allowed. Once the verifications have been completed

65 Note, for Windows this data structure is referred to as the Interrupt Vector Table (IVT).

Page 301

Chapter 20.0 ◄ Interrupts

successfully, the address of the ISR from the IDT is placed in the rip register, thus
effecting a jump to the ISR routine.

 20.3.2.4 Suspension Execute ISR

At this point, depending on the specific ISR, a complete process context switch may be
performed. A process context switch involves saving the entire set of CPU registers for
the interrupted process.

In Linux-based OS's, ISR are typically divided into two parts, referred to as the top-half
and bottom-half. Other OS's refer to these as the First-Level Interrupt Handler (FLIH)
and the Second-Level Interrupt Handlers (SLIH).

The top-half or FLIH is executed immediately and is where any critical activities are
performed. The activities are specific to the ISR, but might include acknowledging the
interrupt, resetting hardware (if necessary), and recording any information only
available at the time of interrupt. The top-half may perform some blocking of other
interrupts (which needs to be minimized).

The bottom-half is where any processing activities (if any) are performed. This helps
ensure that the top-half is completed quickly and that any non-critical processing is
deferred to a more convenient time. If a bottom-half exists, the top-half will create and
schedule the execution of the bottom-half.

Once the top-half completes, the OS scheduler will select a new process.

 20.3.2.5 Resumption

When the OS is ready to resume the interrupted process, the program context is restored
and an iret instruction is executed (to pop rFlags and rip registers, thus completing
the restoration).

 20.4 Suspension Interrupt Processing Summary
The following diagram presents an overview of the general flow used for processing
interrupts by the system.

Page 302

Chapter 20.0 ◄ Interrupts

The steps are detailed as follows:

1. Execution of current program is suspended

- save rip and rFlags registers to stack

2. Obtain starting address of Interrupt Service Routine (ISR)

- interrupt number multiplied by 16

- used as offset into Interrupt Descriptor Table (IDT)

- obtains ISR address (for that interrupt) from IDT

Page 303

Illustration 30: Interrupt Processing Overview

IDT

Executing
Process

Operating
System

ISR

Main Memory

2
3

1

5

4

Chapter 20.0 ◄ Interrupts

3. Jump to Interrupt Service Routine

- set rip to address from IDT

4. Interrupt Service Routine Executes

- save context (i.e., any additional registers altered)

- process interrupt (specific to interrupt generated)

- schedule any later data processing activities

5. Interrupted Process Resumption

- resume scheduling based on OS scheduler

- restore context

- perform iret (to pop rFlags and rip registers)

This interrupt processing mechanism allows a dynamic, run-time lookup for the ISR
address.

 20.5 Exercises
Below are some quiz questions and suggested projects based on this chapter.

 20.5.1 Quiz Questions
Below are some quiz questions based on this chapter.

1) What is the operating system responsible for? Name some of the resources.

2) What is an interrupt?

3) What is an exception?

4) What is an ISR and what is it for?

5) Where (name of the data structure) does the operating system obtain the address
when an interrupt occurs and what is contained in it?

6) When an interrupt occurs, how is the appropriate offset into the IDT calculated?

7) What is the difference between the iret and ret instructions?

8) Why does the OS use the interrupt mechanism instead of just performing a
standard call.

9) What is meant by asynchronously occurring interrupts?

Page 304

Chapter 20.0 ◄ Interrupts

10) What is meant by synchronously occurring interrupts?

11) When an interrupt occurs, the rip and rFlags registers are pushed on the stack.
Much like the call statement, the rip register is pushed to save the return address.
Explain why is the rFlag register pushed on the stack.

12) Name two hardware interrupts.

13) List one way for a program to generate an exception.

14) What is the difference between a maskable and non-maskable interrupt?

 20.5.2 Suggested Projects
Below are some suggested projects based on this chapter.

1) Write a program to obtain and list the contents of the IDT. This will require an
integer to ASCII/Hex program in order to display the applicable addresses in
hex. Use the debugger as necessary to debug the program. When working,
execute the program without the debugger to display results.

Page 305

Chapter 20.0 ◄ Interrupts

Page 306

 21.0 Appendix A – ASCII Table
This appendix provides a copy of the ASCII Table for reference.

Char Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex

NUL 0 0x00 spc 32 0x20 @ 64 0x40 ` 96 0x60

SOH 1 0x01 ! 33 0x21 A 65 0x41 a 97 0x61

STX 2 0x02 " 34 0x22 B 66 0x42 b 98 0x62

ETX 3 0x03 # 35 0x23 C 67 0x43 c 99 0x63

EOT 4 0x04 $ 36 0x24 D 68 0x44 d 100 0x64

ENQ 5 0x05 % 37 0x25 E 69 0x45 e 101 0x65

ACK 6 0x06 & 38 0x26 F 70 0x46 f 102 0x66

BEL 7 0x07 ' 39 0x27 G 71 0x47 g 103 0x67

BS 8 0x08 (40 0x28 H 72 0x48 h 104 0x68

TAB 9 0x09) 41 0x29 I 73 0x49 i 105 0x69

LF 10 0x0A * 42 0x2A J 74 0x4A j 106 0x6A

VT 11 0x0B + 43 0x2B K 75 0x4B k 107 0x6B

FF 12 0x0C , 44 0x2C L 76 0x4C l 108 0x6C

CR 13 0x0D - 45 0x2D M 77 0x4D m 109 0x6D

SO 14 0x0E . 46 0x2E N 78 0x4E n 110 0x6E

SI 15 0x0F / 47 0x2F O 79 0x4F o 111 0x6F

DLE 16 0x10 0 48 0x30 P 80 0x50 p 112 0x70

DC1 17 0x11 1 49 0x31 Q 81 0x51 q 113 0x71

DC2 18 0x12 2 50 0x32 R 82 0x52 r 114 0x72

DC3 19 0x13 3 51 0x33 S 83 0x53 s 115 0x73

Page 307

Appendix
A

Appendix A – ASCII Table

DC4 20 0x14 4 52 0x34 T 84 0x54 t 116 0x74

NAK 21 0x15 5 53 0x35 U 85 0x55 u 117 0x75

SYN 22 0x16 6 54 0x36 V 86 0x56 v 118 0x76

ETB 23 0x17 7 55 0x37 W 87 0x57 w 119 0x77

CAN 24 0x18 8 56 0x38 X 88 0x58 x 120 0x78

EM 25 0x19 9 57 0x39 Y 89 0x59 y 121 0x79

SUB 26 0x1A : 58 0x3A Z 90 0x5A z 122 0x7A

ESC 27 0x1B ; 59 0x3B [91 0x5B { 123 0x7B

FS 28 0x1C < 60 0x3C \ 92 0x5C | 124 0x7C

GS 29 0x1D = 61 0x3D] 93 0x5D } 125 0x7D

RS 30 0x1E > 62 0x3E ^ 94 0x5E ~ 126 0x7E

US 31 0x1F ? 63 0x3F _ 95 0x5F DEL 127 0x7F

For additional information and a more complete listing of the ASCII codes (including
the extended ASCII characters), refer to http://www.asciitable.com/

Page 308

http://www.asciitable.com/

 22.0 Appendix B – Instruction Set Summary
This appendix provides a listing and brief description of the instructions covered in this
text. This set of instructions is a subset of the complete instruction set. For a complete
listing of the instructions, refer to the references noted in chapter 1.

 22.1 Notation
The following table summarizes the notational conventions used.

Operand Notation Description
<reg> Register operand. The operand must be a register.

<reg8>, <reg16>,
<reg32>, <reg64> Register operand with specific size requirement. For

example, reg8 means a byte sized register (e.g., al, bl,
etc.) only and reg32 means a double-word sized register
(e.g., eax, ebx, etc.) only.

<dest> Destination operand. The operand may be a register or
memory. Since it is a destination operand, the contents
will be overwritten with the new result (based on the
specific instruction).

<RXdest> Floating-point destination register operand. The operand
must be a floating-point register. Since it is a destination
operand, the contents will be overwritten with the new
result (based on the specific instruction).

<src> Source operand. Operand value is unchanged after the
instruction.

<imm> Immediate value. May be specified in decimal, hex, octal,
or binary.

Page 309

Appendix
B

Appendix B – Instruction Set Summary

Operand Notation Description
<mem> Memory location. May be a variable name or an indirect

reference (i.e., a memory address).
<op> or <operand> Operand, register or memory.
<op8>, <op16>,
<op32>, <op64> Operand, register or memory, with specific size

requirement. For example, op8 means a byte sized
operand only and reg32 means a double-word sized
operand only.

<label> Program label.

 22.2 Data Movement Instructions
Below is a summary of the basic data movement and addressing instructions.

Instruction Explanation
 mov <dest>, <src> Copy source operand to the destination

operand.
Note 1, both operands cannot be memory.
Note 2, destination operands cannot be an
immediate.

 lea <reg64>, <mem> Place address of <mem> into reg64.

 22.3 Data Conversion instructions
Below is a summary of the basic data conversion instructions.

Instruction Explanation
 movzx <dest>, <src>

 movzx <reg16>, <op8>
 movzx <reg32>, <op8>
 movzx <reg32>, <op16>
 movzx <reg64>, <op8>
 movzx <reg64>, <op16>

Unsigned widening conversion.
Note 1, both operands cannot be memory.
Note 2, destination operands cannot be an
immediate.
Note 3, immediate values not allowed.

 cbw Convert byte in al into word in ax.
Note, only works for al to ax register.

Page 310

Appendix B – Instruction Set Summary

Instruction Explanation
 cwd Convert word in ax into double-word in dx:ax.

Note, only works for ax to dx:ax registers.
 cwde Convert word in ax into double-word in eax.

Note, only works for ax to eax register.
 cdq Convert double-word in eax into quadword in

edx:eax.
Note, only works for eax to edx:eax registers.

 cdqe Convert double-word in eax into quadword in
rax.
Note, only works for rax register.

 cqo Convert quadword in rax into word in double-
quadword in rdx:rax.
Note, only works for rax to rdx:rax registers.

 movsx <dest>, <src>

 movsx <reg16>, <op8>
 movsx <reg32>, <op8>
 movsx <reg32>, <op16>
 movsx <reg64>, <op8>
 movsx <reg64>, <op16>
 movsxd <reg64>, <op32>

Signed widening conversion (via sign
extension).
Note 1, both operands cannot be memory.
Note 2, destination operands cannot be an
immediate.
Note 3, immediate values not allowed.

 22.4 Integer Arithmetic Instructions
Below is a summary of the basic integer arithmetic instructions.

Instruction Explanation
 add <dest>, <src> Add two operands, (<dest> + <src>) and place

the result in <dest> (over-writing previous
value).
Note 1, both operands cannot be memory.
Note 2, destination operand cannot be an
immediate.

 inc <operand> Increment <operand> by 1.
Note, <operand> cannot be an immediate.

 adc <dest>, <src> Add two operands, (<dest> + <src>) and any

Page 311

Appendix B – Instruction Set Summary

Instruction Explanation

previous carry (stored in the carry bit in the
rFlag register) and place the result in <dest>
(over-writing previous value).
Note 1, both operands cannot be memory.
Note 2, destination operand cannot be an
immediate.

Examples: adc rcx, qword [dVvar1]
 adc rax, 42

 sub <dest>, <src> Subtract two operands, (<dest> - <src>) and
place the result in <dest> (over-writing
previous value).
Note 1, both operands cannot be memory.
Note 2, destination operand cannot be an
immediate.

 dec <operand> Decrement <operand> by 1.
Note, <operand> cannot be an immediate.

 mul <src>
 mul <op8>
 mul <op16>
 mul <op32>
 mul <op64>

Multiply A register (al, ax, eax, or rax) times
the <src> operand.

Byte: ax = al * <src>
Word: dx:ax = ax * <src>
Double: edx:eax = eax * <src>
Quad: rdx:rax = rax * <src>

Note, <src> operand cannot be an immediate.
 imul <src>
 imul <dest>, <src/imm32>
 imul <dest>, <src>, <imm32>
 imul <op8>
 imul <op16>
 imul <op32>
 imul <op64>
 imul <reg16>, <op16/imm>
 imul <reg32>, <op32/imm>
 imul <reg64>, <op64/imm>
 imul <reg16>, <op16>, <imm>
 imul <reg32>, <op32>, <imm>
 imul <reg64>, <op64>, <imm>

Signed multiply instruction.

For single operand:
Byte: ax = al * <src>
Word: dx:ax = ax * <src>
Double: edx:eax = eax * <src>
Quad: rdx:rax = rax * <src>

Note, <src> operand cannot be an immediate.
For two operands:

<reg16> = <reg16> * <op16/imm>
<reg32> = <reg32> * <op32/imm>
<reg64> = <reg64> * <op64/imm>

Page 312

Appendix B – Instruction Set Summary

Instruction Explanation

For three operands:
<reg16> = <op16> * <imm>
<reg32> = <op32> * <imm>
<reg64> = <op64> * <imm>

 div <src>
 div <op8>
 div <op16>
 div <op32>
 div <op64>

Unsigned divide A/D register (ax, dx:ax,
edx:eax, or rdx:rax) by the <src> operand.

Byte: al = ax / <src>, rem in ah
Word: ax = dx:ax / <src>, rem in dx
Double: eax = eax / <src>, rem in edx
Quad: rax = rax / <src>, rem in rdx

Note, <src> operand cannot be an immediate.
 idiv <src>
 idiv <op8>
 idiv <op16>
 idiv <op32>
 idiv <op64>

Signed divide A/D register (ax, dx:ax,
edx:eax, or rdx:rax) by the <src> operand.

Byte: al = ax / <src>, rem in ah
Word: ax = dx:ax / <src>, rem in dx
Double: eax = eax / <src>, rem in edx
Quad: rax = rax / <src>, rem in rdx

Note, <src> operand cannot be an immediate.

 22.5 Logical, Shift, and Rotate Instructions
Below is a summary of the basic logical, shift, arithmetic shift, and rotate instructions.

Instruction Explanation
 and <dest>, <src> Perform logical AND operation on two

operands, (<dest> and <src>) and place the
result in <dest> (over-writing previous value).
Note 1, both operands cannot be memory.
Note 2, destination operand cannot be an
immediate.

 or <dest>, <src> Perform logical OR operation on two operands,
(<dest> || <src>) and place the result in <dest>
(over-writing previous value).
Note 1, both operands cannot be memory.
Note 2, destination operand cannot be an
immediate.

Page 313

Appendix B – Instruction Set Summary

Instruction Explanation
 xor <dest>, <src> Perform logical XOR operation on two

operands, (<dest> ^ <src>) and place the
result in <dest> (over-writing previous value).
Note 1, both operands cannot be memory.
Note 2, destination operand ca not be an
immediate.

 not <op> Perform a logical not operation (one's
complement on the operand 1's→0's and
0's→1's).
Note, operand cannot be an immediate.

 shl <dest>, <imm>
 shl <dest>, cl Perform logical shift left operation on

destination operand. Zero fills from right (as
needed).
The <imm> or the value in cl register must be
between 1 and 64.
Note, destination operand cannot be an
immediate.

 shr <dest>, <imm>
 shr <dest>, cl Perform logical shift right operation on

destination operand. Zero fills from left (as
needed).
The <imm> or the value in cl register must be
between 1 and 64.
Note, destination operand cannot be an
immediate.

 sal <dest>, <imm>
 sal <dest>, cl Perform arithmetic shift left operation on

destination operand. Zero fills from right (as
needed).
The <imm> or the value in cl register must be
between 1 and 64.
Note, destination operand cannot be an
immediate.

 sar <dest>, <imm>
 sar <dest>, cl Perform arithmetic shift right operation on

destination operand. Sign fills from left (as
needed).
The <imm> or the value in cl register must be
between 1 and 64.
Note, destination operand cannot be an
immediate.

Page 314

Appendix B – Instruction Set Summary

Instruction Explanation
 rol <dest>, <imm>
 rol <dest>, cl Perform rotate left operation on destination

operand.
The <imm> or the value in cl register must be
between 1 and 64.
Note, destination operand cannot be an
immediate.

 ror <dest>, <imm>
 ror <dest>, cl Perform rotate right operation on destination

operand.
The <imm> or the value in cl register must be
between 1 and 64.
Note, destination operand cannot be an
immediate.

 22.6 Control Instructions
Below is a summary of the basic control instructions.

Instruction Explanation
 cmp <op1>, <op2> Compare <op1> with <op2>.

Results are stored in the rFlag register.
Note 1, operands are not changed.
Note 2, both operands cannot be memory.
Note 3, <op1> operand cannot be an
immediate.

 je <label> Based on preceding comparison instruction,
jump to <label> if <op1> == <op2>.
Label must be defined exactly once.

 jne <label> Based on preceding comparison instruction,
jump to <label> if <op1> != <op2>.
Label must be defined exactly once.

 jl <label> For signed data, based on preceding
comparison instruction, jump to <label> if
<op1> < <op2>.
Label must be defined exactly once.

Page 315

Appendix B – Instruction Set Summary

Instruction Explanation
 jle <label> For signed data, based on preceding

comparison instruction, jump to <label> if
<op1>  <op2>.
Label must be defined exactly once.

 jg <label> For signed data, based on preceding
comparison instruction, jump to <label> if
<op1> > <op2>.
Label must be defined exactly once.

 jge <label> For signed data, based on preceding
comparison instruction, jump to <label> if
<op1>  <op2>.
Label must be defined exactly once.

 jb <label> For unsigned data, based on preceding
comparison instruction, jump to <label> if
<op1> < <op2>.
Label must be defined exactly once.

 jbe <label> For unsigned data, based on preceding
comparison instruction, jump to <label> if
<op1>  <op2>.
Label must be defined exactly once.

 ja <label> For unsigned data, based on preceding
comparison instruction, jump to <label> if
<op1> > <op2>.
Label must be defined exactly once.

 jae <label> For unsigned data, based on preceding
comparison instruction, jump to <label> if
<op1>  <op2>.
Label must be defined exactly once.

 loop <label> Decrement rcx register and jump to <label> if
rcx is ≠ 0.
Note, label must be defined exactly once.

Page 316

Appendix B – Instruction Set Summary

 22.7 Stack Instructions
Below is a summary of the basic stack instructions.

Instruction Explanation
 push <op64> Push the 64-bit operand on the stack. Adjusts

rsp accordingly. Operand is unaltered.
 pop <op64> Pop the 64-bit operand from the stack. Adjusts

rsp accordingly. The operand may not be an
immediate value. Operand is overwritten.

 22.8 Function Instructions
Below is a summary of the basic instructions for implementing function calls.

Instruction Explanation
 call <funcName> Calls a function. Push the 64-bit rip register

and jump to the <funcName>.
 ret Return from a function. Pop the stack into the

rip register, effecting a jump to the line after
the call.

 22.9 Floating-Point Data Movement Instructions
Below is a summary of the basic instructions for floating-point data movement
instructions.

Instruction Explanation
 movss <dest>, <src> Copy 32-bit source operand to the 32-bit

destination operand.
Note 1, both operands cannot be memory.
Note 2, operands cannot be an immediate.

Examples: movss xmm0, dword [x]
 movss dword [fltVar], xmm1
 movss xmm3, xmm2

Page 317

Appendix B – Instruction Set Summary

Instruction Explanation
 movsd <dest>, <src> Copy 64-bit source operand to the 64-bit

destination operand.
Note 1, both operands cannot be memory.
Note 2, operands cannot be an immediate.

Examples: movsd xmm0, qword [y]
 movsd qword [fltdVar], xmm1
 movsd xmm3, xmm2

 22.10 Floating-Point Data Conversion Instructions
Below is a summary of the basic instructions for floating-point data conversion
instructions.

Instruction Explanation
 cvtss2sd <RXdest>, <src> Convert 32-bit floating-point source operand to

the 64-bit floating-point destination operand.
Note 1, destination operand must be floating-
point register.
Note 2, source operand cannot be an immediate.

Examples: cvtss2sd xmm0, dword [fltSVar]
 cvtss2sd xmm3, eax
 cvtss2sd xmm3, xmm2

 cvtsd2ss <RXdest>, <src> Convert 64-bit floating-point source operand to
the 32-bit floating-point destination operand.
Note 1, destination operand must be floating-
point register.
Note 2, source operand cannot be an immediate.

Examples: cvtsd2ss xmm0, qword [fltDVar]
 cvtsd2ss xmm1, rax
 cvtsd2ss xmm3, xmm2

 cvtss2si <reg>, <src> Convert 32-bit floating-point source operand to
the 32-bit integer destination operand.
Note 1, destination operand must be register.
Note 2, source operand cannot be an immediate.

Page 318

Appendix B – Instruction Set Summary

Instruction Explanation

Examples: cvtss2si xmm1, xmm0
 cvtss2si eax, xmm0
 cvtss2si eax, dword [fltSVar]

 cvtsd2si <reg>, <src> Convert 64-bit floating-point source operand to
the 32-bit integer destination operand.
Note 1, destination operand must be register.
Note 2, source operand cannot be an immediate.

Examples: cvtss2si xmm1, xmm0
 cvtss2si eax, xmm0
 cvtss2si eax, qword [fltDVar]

 cvtsi2ss <RXdest>, <src> Convert 32-bit integer source operand to the 32-
bit floating-point destination operand.
Note 1, destination operand must be floating-
point register.
Note 2, source operand cannot be an immediate.

Examples: cvtsi2ss xmm0, eax
 cvtsi2ss xmm0, dword [fltDVar]

 cvtsi2sd <RXdest>, <src> Convert 32-bit integer source operand to the 64-
bit floating-point destination operand.
Note 1, destination operand must be floating-
point register.
Note 2, source operand cannot be an immediate.

Examples: cvtsi2sd xmm0, eax
 cvtsi2sd xmm0, dword [fltDVar]

 22.11 Floating-Point Arithmetic Instructions
Below is a summary of the basic instructions for floating-point arithmetic instructions.

Page 319

Appendix B – Instruction Set Summary

Instruction Explanation
 addss <RXdest>, <src> Add two 32-bit floating-point operands,

(<RXdest> + <src>) and place the result in
<RXdest> (over-writing previous value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: addss xmm0, xmm3
 addss xmm5, dword [fSVar]

 addsd <RXdest>, <src> Add two 64-bit floating-point operands,
(<RXdest> + <src>) and place the result in
<RXdest> (over-writing previous value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: addsd xmm0, xmm3
 addsd xmm5, qword [fDVar]

 subss <RXdest>, <src> Subtract two 32-bit floating-point operands,
(<RXdest> - <src>) and place the result in
<RXdest> (over-writing previous value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: subss xmm0, xmm3
 subss xmm5, dword [fSVar]

 subsd <RXdest>, <src> Subtract two 64-bit floating-point operands,
(<RXdest> - <src>) and place the result in
<RXdest> (over-writing previous value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Page 320

Appendix B – Instruction Set Summary

Instruction Explanation

Examples: subsd xmm0, xmm3
 subsd xmm5, qword [fDVar]

 mulss <RXdest>, <src> Multiply two 32-bit floating-point operands,
(<RXdest> * <src>) and place the result in
<RXdest> (over-writing previous value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: mulss xmm0, xmm3
 mulss xmm5, dword [fSVar]

 mulsd <RXdest>, <src> Multiply two 64-bit floating-point operands,
(<RXdest> * <src>) and place the result in
<RXdest> (over-writing previous value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: mulsd xmm0, xmm3
 mulsd xmm5, qword [fDVar]

 divss <RXdest>, <src> Divide two 32-bit floating-point operands,
(<RXdest> / <src>) and place the result in
<RXdest> (over-writing previous value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: divss xmm0, xmm3
 divss xmm5, dword [fSVar]

Page 321

Appendix B – Instruction Set Summary

Instruction Explanation
 divsd <RXdest>, <src> Divide two 64-bit floating-point operands,

(<RXdest> / <src>) and place the result in
<RXdest> (over-writing previous value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: divsd xmm0, xmm3
 divsd xmm5, qword [fDVar]

 sqrtss <RXdest>, <src> Take the square root of the 32-bit floating-
point source operand and place the result in
destination operand (over-writing previous
value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: sqrtss xmm0, xmm3
 sqrtss xmm7, dword [fSVar]

 sqrtsd <RXdest>, <src> Take the square root of the 64-bit floating-
point source operand and place the result in
destination operand (over-writing previous
value).
Note 1, destination operands must be a
floating-point register.
Note 2, source operand cannot be an
immediate.

Examples: sqrtsd xmm0, xmm3
 sqrtsd xmm7, qword [fDVar]

Page 322

Appendix B – Instruction Set Summary

 22.12 Floating-Point Control Instructions
Below is a summary of the basic instructions for floating-point control instructions.

Instruction Explanation
 ucomiss <RXsrc>, <src> Compare two 32-bit floating-point operands,

(<RXsrc> + <src>). Results are placed in the
rFlag register. Neither operand is changed.
Note 1, <RXsrc> operands must be a floating-
point register.
Note 2, source operand may be a floating-point
register or memory, but not be an immediate.

Examples: ucomiss xmm0, xmm3
 ucomiss xmm5, dword [fSVar]

 ucomisd <RXsrc>, <src> Compare two 64-bit floating-point operands,
(<RXsrc> + <src>). Results are placed in the
rFlag register. Neither operand is changed.
Note 1, <RXsrc> operands must be a floating-
point register.
Note 2, source operand may be a floating-point
register or memory, but not be an immediate.

Examples: ucomisd xmm0, xmm3
 ucomisd xmm5, dword [fSVar]

Page 323

Appendix B – Instruction Set Summary

Page 324

 23.0 Appendix C – System Services
This appendix provides a listing and brief description of a subset of the system service
calls. This list is for 64-bit Ubuntu systems. A more complete list can be obtained from
multiple web sources.

 23.1 Return Codes
The system call will return a code in the rax register. If the value returned is less than
0, that is an indication that an error has occurred. If the operation is successful, the
value returned will depend on the specific system service. Refer to the Error Codes
section for additional information regarding the values of the error codes.

 23.2 Basic System Services
The following table summarizes the more common system services.

Call Code
(rax)

System Service Description

0 SYS_read Read characters
 rdi = file descriptor (of where to read from)

 rsi = address of where to store characters

 rdx = count of characters to read

If unsuccessful, returns negative value. If successful, returns count
of characters actually read.

1 SYS_write Write characters
 rdi = file descriptor (of where to write to)

Page 325

Appendix
C

Appendix C – System Services

Call Code
(rax)

System Service Description

 rsi = address of characters to write

 rdx = count of characters to write

If unsuccessful, returns negative value. If successful, returns count
of characters actually written.

2 SYS_open Open a file
 rdi = address of NULL terminated file name

 rsi = file status flags (typically O_RDONLY)

If unsuccessful, returns negative value. If successful, returns file
descriptor.

3 SYS_close Close an open file
 rdi = file descriptor of open file to close

If unsuccessful, returns negative value.

8 SYS_lseek Reposition the file read/write file offset.
 rdi = file descriptor (of where to write to)

 rsi = offset

 rdx = origin

If unsuccessful, returns negative value.

57 SYS_fork Fork current process.
59 SYS_execve Execute a program

 rdi = Address of NULL terminated string for
name of program to execute.

60 SYS_exit Terminate executing process.
 rdi = exit status (typically 0)

Page 326

Appendix C – System Services

Call Code
(rax)

System Service Description

85 SYS_creat Open/Create a file.
 rdi = address of NULL terminated file name

 rsi = file mode flags

If unsuccessful, returns negative value. If successful, returns file
descriptor.

96 SYS_gettimeofday Get date and time of day
 rdi = address of time value structure

 rsi = address of time zone structure

If unsuccessful, returns negative value. If successful, returns
information in the passed structures.

 23.3 File Modes
When performing file operations, the file mode provides information to the operating
system regarding the file access permissions that will be allowed.

When opening an existing file, one of the following file modes must be specified.

Mode Value Description
O_RDONLY 0 Read only. Allow reading from the

file, but to not allow writing to the file.
Most common operation.

O_WRONLY 1 Write only. Typically used if
information is to be appended to a file.

O_RDWR 2 Allow simultaneous reading and
writing.

When creating a new file, the file permissions must be specified. Below are the
complete set of file permissions. As is standard for Linux file systems, the permission
values are specified in Octal.

Page 327

Appendix C – System Services

Mode Value Description
S_IRWXU 00700q User (file owner) has read, write, and

execute permission.

S_IRUSR 00400q User (file owner) has read permission.

S_IWUSR 00200q User (file owner) has write permission.

S_IXUSR 00100q User (file owner) has execute
permission.

S_IRWXG 00070q Group has read, write, and execute
permission.

S_IRGRP 00040q Group has read permission.

S_IWGRP 00020q Group has write permission.

S_IXGRP 00010q Group has execute permission.

S_IRWXO 00007q Others have read, write, and execute
permission.

S_IROTH 00004q Others have read permission.

S_IWOTH 00002q Others have write permission.

S_IXOTH 00001q Others have execute permission.

The text examples only address permissions for the user or owner of the file.

 23.4 Error Codes
If a system service returns an error, the value of the return code will be negative. The
following is a list of the error code. The code value is provided along with the Linux
symbolic name. High-level languages typically use the name which is not used at the
assembly level and is only provided for reference.

Error Code Symbolic
Name

Description

-1 EPERM Operation not permitted.

-2 ENOENT No such file or directory.

-3 ESRCH No such process.

-4 EINTR Interrupted system call.

Page 328

Appendix C – System Services

-5 EIO I/O Error.

-6 ENXIO No such device or address.

-7 E2BIG Argument list too long.

-8 ENOEXEC Exec format error.

-9 EBADF Bad file number.

-10 ECHILD No child process.

-11 EAGAIN Try again.

-12 ENOMEM Out of memory.

-13 EACCES Permission denied.

-14 EFAULT Bad address.

-15 ENOTBLK Block device required.

-16 EBUSY Device or resource busy.

-17 EEXIST File exists.

-18 EXDEV Cross-device link.

-19 ENODEV No such device.

-20 ENOTDIR Not a directory.

-21 EISDIR Is a directory.

-22 EINVAL Invalid argument.

-23 ENFILE File table overflow.

-24 EMFILE Too many open files.

-25 ENOTTY Not a typewriter.

-26 ETXTBSY Text file busy.

-27 EFBIG File too large.

-28 ENOSPC No space left on device.

-29 ESPIPE Illegal seek.

-30 EROFS Read-only file system.

-31 EMLINK Too many links.

-32 EPIPE Broken pipe.

Page 329

Appendix C – System Services

-33 EDOM Math argument out of domain of
function.

-34 ERANGE Math result not representable.

Only the most common error codes are shown. A complete list can be found via the
Internet or by looking on the current system includes files. For Ubuntu, this is typically
located in /usr/include/asm-generic/errno-base.h.

Page 330

 24.0 Appendix D – Quiz Question Answers
This appendix provides answers for the quiz questions in each chapter.

 24.1 Quiz Question Answers, Chapter 1
There are no quiz questions for Chapter 1.

 24.2 Quiz Question Answers, Chapter 2
1) See Section 2.1, Illustration 1, Computer Architecture.

2) Bus or Interconnection.

3) Secondary storage.

4) Primary storage or main memory (RAM).

5) Keeps a copy of the data closer to the CPU, eliminating the extra time required
to access the RAM via the Bus.

6) 4 bytes.

7) 1 byte.

8) The LSB is 4016 and the MSB is 0016.

9) The answer is as follows:

High memory 0016

4C16

4B16

Low memory 4016

Page 331

Appendix
D

Appendix D – Quiz Question Answers

10) The layout is:

 ← eax →

 ← ax →

 rax = ah al

11) The answers are as follows:

1. 8

2. 64

3. 16

4. 32

5. 64

6. 8

7. 8

8. 16

12) The rip register.

13) The rsp register.

14) The rax register is: 000000000000000016.

15) The answers are as follows:

1. EF16

2. CDEF16

3. 89ABCDEF16

4. 0123456789ABCDEF16

 24.3 Quiz Question Answers, Chapter 3
1) The answers are as follows:

1. -128 to +127

2. 0 to 255

Page 332

Appendix D – Quiz Question Answers

3. −32,768 to +32,767

4. 0 to 65,535

5. −2,147,483,648 to +2,147,483,647

6. 0 to 4,294,967,295

2) The answers are as follows:

1. 5

2. 9

3. 13

4. 21

3) The answers are as follows:

1. 0xFD

2. 0x0B

3. 0xF7

4. 0xEB

4) The answers are as follows:

1. 0xFFEF

2. 0x0011

3. 0xFFE1

4. 0xFF76

5) The answers are as follows:

1. 0xFFFFFFF5

2. 0xFFFFFFE5

3. 0x00000007

4. 0xFFFFFEFB

6) The answers are as follows:

1. -5

2. -22

Page 333

Appendix D – Quiz Question Answers

3. -13

4. -8

7) 0.510 is represented as 0.12

8) The answers are as follows:

1. -12.25

2. +12.25

3. -6.5

4. -7.5

9) The answers are as follows:

1. 0x41340000

2. 0xC1890000

3. 0x41AF0000

4. 0xBF400000

10) The answers are as follows:

1. 0x41

2. 0x61

3. 0x30

4. 0x38

5. 0x09

11) The answers are as follows:

1. “World” = 0x57 0x6F 0x72 0x6C 0x64

2. “123” = 0x31 0x32 0x33

3. “Yes!?” = 0x59 0x65 0x73 0x21 0x 3F

 24.4 Quiz Question Answers, Chapter 4
1) yasm

2) With the ; (semicolon).

Page 334

Appendix D – Quiz Question Answers

3) Section data.

4) Section bss.

5) Section text.
6) The answers are as follows:

1. bNum db 10

2. wNum dw 10291

3. dwNum dd 2126010

4. qwNum dq 10000000000

7) The answers are as follows:

1. bArr resb 100

2. wArr resw 3000

3. dwArr resd 200

4. qArr resq 5000

8) The declarations are:

 global _start

 _start:

 24.5 Quiz Question Answers, Chapter 5
1) The relationship is 1:1 (one to one).

2) Creation of symbol table, macro expansion, and evaluation of constant
expressions.

3) Final generation of code, create list file if requested, create object file.

4) Combine one or more object files into a single executable, update all relocatable
addresses, search user and system libraries, create cross reference file if
requested, and create final executable file.

5) Attempt to open executable file (verifying existence and permissions), read
header information, ask operating system to create new process, if successful,
read rest of executable file and load into memory (where specified by operating
system), and inform operating system when load is completed. Note, the loader
does not run the process.

Page 335

Appendix D – Quiz Question Answers

6) Examples might include:

1. BUFFSIZE + 1

2. MAX + OFFSET

Note, assumes that upper case implies defined constant. Many examples
possible.

7) See Section 5.1, Illustration 4, Overview: Assemble, Link, Load.

8) At run-time.

9) The symbol name and the symbol address.

 24.6 Quiz Question Answers, Chapter 6
1) By typing: ddd <progName>

2) The “-g” option.

3) Executes the program, always starting from the beginning.

4) The continue command continues to the next breakpoint.

5) Via the menu option Status → Registers.

6) The first is the register name, the second is the hex representation of the value,
and the third is the decimal representation of the value (excluding some registers
such as rip and rsp which are always shown in hex).

7) There are multiple ways to exit the debugger including typing exit in the
command window, clicking the x (upper left corner), or using the menu options
File → Exit.

8) There are multiple ways to set a breakpoint including double-clicking on the
line, typing b <lineNumber>, or typing b <labelName> (if a label exists on the
desired line).

9) The debugger command to read commands from a file is; source <fileName>.

10) The green arrow points to the next instruction to be executed.

11) The answers are as follows:

1. x/db &bVar1

2. x/dh &wVar1

3. x/dw &dVar1

Page 336

Appendix D – Quiz Question Answers

4. x/dg &qVar1

5. x/30db &bArr1

6. x/50dh &wArr1

7. x/75dw &dArr1

12) The answers are as follows:

1. x/xb &bVar1

2. x/xh &wVar1

3. x/xw &dVar1

4. x/xg &qVar1

5. x/30xb &bArr1

6. x/50xh &wArr1

7. x/75xw &dArr1

13) The command is: x/ug $rsp

14) The command is: x/5ug $rsp

 24.7 Quiz Question Answers, Chapter 7
1) The answers are as follows:

1. Legal

2. Legal

3. Illegal, 354 does not fit into a byte

4. Legal

5. Illegal, sizes do not match

6. Illegal, cannot change the value 54

7. Legal

8. Legal, while legal it would probably result in an incorrect value

9. Legal

10. Legal

Page 337

Appendix D – Quiz Question Answers

11. Legal, while legal it would probably result in an incorrect value

12. Illegal, cannot move memory to memory

13. Illegal, cannot move memory to memory

14. Legal

15. Illegal, r16 is not a valid register

16. Legal

2) The answers are as follows:

1. Copies the byte value at bVar1 into the rsi register treating as an unsigned
value thus setting the upper 56 bits to 0.

2. Copies the byte value at bVar1 into the rsi register treating as a signed value,
thus sign extending the upper 56-bits (1's for negative, 0's for positive).

3) The answers are as follows:

1. mov ah, 0

2. cbw

4) The answers are as follows:

1. movzx eax, ax

2. cwde

5) The answers are as follows:

1. mov dx, 0

2. cwd

6) The cwd instruction only converts the signed value in ax into a sign value in
dx:ax (and nothing else). The movsx instruction copies the word source
operand into the double-word destination operand.

7) On the first instruction, the destination operand size must be explicitly specified
since the source operand, an immediate value of 1, does not have an inherent
size associated with it. On the second instruction, the destination operand size
can be determined from the source operand (since the eax register is a double-
word in this case).

Page 338

Appendix D – Quiz Question Answers

8) The answers are as follows (grouped in sets of 4 for clarity):

1. rax = 0x0000 0000 0000 0009

2. rbx = 0x0000 0000 0000 000B

9) The answers are as follows (grouped in sets of 4 for clarity):

1. rax = 0x0000 0000 0000 0007

2. rbx = 0x0000 0000 0000 0002

10) The answers are as follows (grouped in sets of 4 for clarity):

1. rax = 0x0000 0000 0000 0009

2. rbx = 0xFFFF FFFF FFFF FFF9

11) The answers are as follows (grouped in sets of 4 for clarity):

1. rax = 0x0000 0000 0000 000C

2. rdx = 0x0000 0000 0000 0000

12) The answers are as follows (grouped in sets of 4 for clarity):

1. rax = 0x0000 0000 0000 0001

2. rdx = 0x0000 0000 0000 0002

13) The answers are as follows (grouped in sets of 4 for clarity):

1. rax = 0x0000 0000 0000 0002

2. rdx = 0x0000 0000 0000 0003

14) The answers are as follows:

1. The destination operand cannot be an immediate value (42).

2. An immediate operand is not allowed since the size/type cannot be
determined.

3. The mov instruction does not allow a memory to memory operation.

4. An address requires 64-bits which will not fit into the ax register.

15) The idiv instruction will divide by edx:eax and edx was not set.

16) The operands for the divide a signed (-500), but an unsigned divide is used.

17) The word divide used will place the result in the dx:ax registers, but the eax
register is used to obtain the result.

Page 339

Appendix D – Quiz Question Answers

18) The three-operand multiply instructions are only allowed for a limited set of
signed multiplication operations.

 24.8 Quiz Question Answers, Chapter 8
1) The first instruction places the value from qVar1 into the rdx register. The

second instruction places the address of qVar1 into the rdx register.

2) The answers are as follows:

1. Immediate

2. Memory

3. Immediate

4. Illegal, destination operand cannot be an immediate value

5. Register

6. Memory

7. Memory

8. Illegal, source and destination operands not the same size.

3) The answers are as follows (grouped in sets of 4 for clarity):

1. eax = 0x0000 000A

4) The answers are as follows (grouped in sets of 4 for clarity):

1. eax = 0x0000 0003

2. edx = 0x0000 0002

5) The answers are as follows (grouped in sets of 4 for clarity):

1. eax = 0x0000 0009

2. ebx = 0x0000 0002

3. rcx = 0x0000 0000 0000 0000

4. rsi = 0x0000 0000 0000 000C

6) The answers are as follows (grouped in sets of 4 for clarity):

1. rax = 0x0000 0010

2. rcx = 0x0000 0000 0000 0000

Page 340

Appendix D – Quiz Question Answers

3. edx = 0x0000 0000

4. rsi = 0x0000 0000 0000 0004

7) The answers are as follows (grouped in sets of 4 for clarity):

1. eax = 0x0000 0002

2. rcx = 0x0000 0000 0000 0000

3. edx = 0x0000 0005

4. rsi = 0x0000 0000 0000 0003

8) The answers are as follows (grouped in sets of 4 for clarity):

1. eax = 0x0000 0018

2. edx = 0x0000 0000

3. rcx = 0x0000 0000 0000 0000

4. rsi = 0x0000 0000 0000 0005

 24.9 Quiz Question Answers, Chapter 9
1) The rsp register.

2) First, rsp = rsp - 8 and then rax register is copied to [rsp] (in that order).

3) 8 bytes.

4) The answers are as follows (grouped in sets of 4 for clarity):

1. r10 = 0x0000 0000 0000 0003

2. r11 = 0x0000 0000 0000 0002

3. r12 = 0x0000 0000 0000 0001

5) The array is reversed in memory.

6) Memory is used more efficiently.

 24.10 Quiz Question Answers, Chapter 10
1) An unambiguous, ordered sequence of steps involved in solving a problem.

2) The answer is as follows:

1. Understand the Problem

Page 341

Appendix D – Quiz Question Answers

2. Create the Algorithm

3. Implement the Program

4. Test/Debug the Program

3) No, the steps are applicable to any language or complex problem (even beyond
programming).

4) An assemble-time error.

5) An assemble-time error.

6) An assemble-time error.

7) A run-time error.

 24.11 Quiz Question Answers, Chapter 11
1) At the top (above the data, BSS, and text sections).

2) Once for each time the macro is invoked.

3) The %% will ensure that a unique label name is generated each time the macro is
used.

4) If the %% is omitted on a label, the label will be copied, as is, and thus appear to
be duplicated.

5) Yes. This might be used to exit a macro to an error handling code block (not
within the macro).

6) The macro argument substitution occurs at assemble-time.

 24.12 Quiz Question Answers, Chapter 12
1) Linkage and Argument Transmission.

2) The call and the ret instructions.

3) Call-by-value.

4) Call-by-reference.

5) Once, regardless of how many times it is called.

6) The current rip is placed on the stack and the rip is changed to the address of
called function.

7) Save and restore the contents of the callee preserved registers.

Page 342

Appendix D – Quiz Question Answers

8) In: rdi, rsi, rdx, rcx, r8, and r9.

9) In: edi, esi, edx, ecx, r8d, and r9d.

10) That a function may change the value in the register without needing to save and
restore it.

11) Two of: rax, rcx, rdx, rsi, rdi, r8, r9, r10, and r11.

12) Call frame, function call frame, or activation record.

13) A leaf function does not call other functions.

14) Clear the passed arguments off the stack.

15) Twenty-four (24) since three arguments at 8 bytes each (8 x 3).

16) The offset is [rbp+16] regardless of which saved registers are pushed.

17) Available memory.

18) Call-by-reference.

19) The 7th argument is at [rbp+16] and the 8th argument is at [rbp+24].

20) Memory efficiency since stack dynamic local variables only use memory when
needed (when the function is being executed).

 24.13 Quiz Question Answers, Chapter 13
1) The rax register.

2) The operating system.

3) The call code is SYS_write (1). The 1st argument in rdi is the output location
STDOUT, the 2nd argument in rsi is the starting address of the characters to
output, and the 3rd argument in rdx is the number of characters to write.

4) It is unknown how many characters will be entered.

5) The rax register will contain the file descriptor.

6) The rax register will contain an error code.

7) In: rdi, rsi, rdx, r10, r8, and r9.

 24.14 Quiz Question Answers, Chapter 14
1) The statement is: extern func1, func2

Page 343

Appendix D – Quiz Question Answers

2) The statement is: extern func1, func2

3) The assembler will generate an error.

4) Link-time.

5) The linker will generate an unsatisfied external reference error.

6) Yes. However, in the debugger, the code would not be displayed.

 24.15 Quiz Question Answers, Chapter 15
1) The buffer overflow exploit is typically called stack smashing.

2) The C function does not check the array bounds of the input arguments.

3) Yes.

4) Typing a very large number of characters when input is requested and, if the
program crashes.

5) A series of nop instructions designed to make the target of a buffer overflow
exploit easier to hit.

6) Many possible answers. Delete a file, open a network connection, kill a process,
etc.

7) Use of canaries, implementation of Data Execution Prevention (DEP), and use of
Data Address Space Layout Randomization.

 24.16 Quiz Question Answers, Chapter 16
1) The operating system. Specifically, the loader.

2) The program being executed.

3) The name of the executable file.

4) The argc refers to argument count and argv refers to the argument vector
(starting address of the table of addresses for the string representing each
argument).

5) In the rdi register.

6) In the rsi register.

7) The spaces are removed by the operating system so the program does not have to
do anything.

Page 344

Appendix D – Quiz Question Answers

8) No. The program is required to check and determine if that is an error.

 24.17 Quiz Question Answers, Chapter 17
1) The end of line character for Linux is linefeed (LF) and the end of line character

for Windows is carriage return, line feed (CR, LF).

2) Store a subset of the information for quick access.

3) They are in the language I/O library functions (i.e., cout, cin, etc.).

4) Simplify the programming.

5) I/O performance improvement.

6) The system service functions require a specific number of characters to read
which is not known ahead of time for “one line” of text.

7) Keeps a subset of the information at the next higher level in the hierarchy (which
is faster than the next lower level).

8) Reduces the overhead associated bus contention and memory latency for
excessive system reads.

9) The variable values must be retained between function calls.

10) The end of file must be inferred from the number of characters actually read.

11) Many reasons possible, including file being deleted in another Window after the
open or the drive (USB) being removed after the open.

12) The actual number of characters read will be 0 which must be checked explicitly.

13) To ensure the passed line buffer array is not overwritten.

14) By initializing the variables to indicate that all buffer characters have been read.

 24.18 Quiz Question Answers, Chapter 18
1) The registers are: xmm0, xmm1, xmm2, . . ., xmm15.

2) Single precision is 4 bytes and double precision is 8 bytes.

3) Cumulative rounding error associated with the inexact representation of 0.1 in
binary.

4) Float functions return the value in xmm0.

5) None of the floating-point registers are preserved.

Page 345

Appendix D – Quiz Question Answers

 24.19 Quiz Question Answers, Chapter 19
1) Concurrency implies multiple different (not necessarily related) processes

simultaneously making progress. Parallel processing implies that processes are
executing simultaneously.

2) Distributed computing and multiprocessing.

3) On different computers connected via a network.

4) Many possible answers, including Folding@Home and SETI@Home. An
Internet search can provide a more complete listing.

5) On different cores in the CPU.

6) Distributed computing allows a very large number of compute nodes but
requires communications over a network which has inherent communication
delays.

7) Multiprocessing allows very fast communications between processes via shared
memory but supports only a limited amount of simultaneous executing threads
related to the number of cores available.

8) Multiple threads simultaneously writing to a shared variable with no control or
coordination.

9) No. No problem exists since the variable is not being changed.

10) Yes. Since the variable is being changed, one thread may alter the value after
the other has obtained the value.

 24.20 Quiz Question Answers, Chapter 20
1) The operating system is responsible for managing the resources. The resources

include CPU cores, primary memory, secondary storage, display screen,
keyboard, and mouse.

2) An event that alters the sequence of instructions executed by a processor.

3) An interrupt that is caused by the current process and needs attention of the
kernel.

4) An ISR is an Interrupt Service Routine which is executed when an interrupt
occurs to service (perform required actions) that interrupt.

5) Interrupt Descriptor Table (IDT) which contains the addresses of the Interrupt
Service Routines (ISRs) and the gate information.

Page 346

Appendix D – Quiz Question Answers

6) The interrupt number is multiplied by 16.

7) The ret instruction will pop the return address from the stack and place it in the
rip register. The iret instruction will pop the return address and the preserved
flag register contents from the stack and place it in the rip register and rFlag
registers.

8) The call requires the target address. Since the ISR addresses may change due to
hardware changes or software updates, the interrupt mechanism performs a run-
time look up for the ISR address.

9) That the interrupt timing, when or even if the interrupt might occur, cannot be
predicted in the context of the executing code.

10) That the interrupt timing can be predicted in the context of the executing code.
This is typical of system service calls or exceptions such as division by 0.

11) Each instruction changes the rFlag register. After the interrupt is completed, the
flag register must be restored to its original value to ensure that the interrupted
process is able to resume.

12) Many possible answers, including I/O devices such as keyboard and mouse,
network adapter, secondary storage devices, or other peripherals.

13) Many possible answers, including dividing by 0.

14) A maskable interrupt may be ignored briefly where a non-maskable interrupt
must be handled immediately.

Page 347

Appendix D – Quiz Question Answers

Page 348

 25.0 Alphabetical Index

0x..72
53..288
activation record...................................178
add with carry...83
Addresses and Values.....................75, 129
Addressing Modes................................129
American Standard Code for Information
Interchange...28
Architecture Overview.............................7
argc...246
Argument Count...................................247
Argument Transmission.......................175
Argument Vector Table........................247
argv...246
Arithmetic Logic Unit..............................9
ASCII..28
Assemble and Link...............................229
Assemble Commands.............................43
Assemble/Link Script.............................50
Assemble/Link/Load Overview..............41
Assembler...43
Assembler Directives..............................47
Assembler Error....................................161
Assembly Main.....................................226
assembly source file...............................33
Asynchronous Interrupts......................296

automatics...172
base address..132
Base Pointer Register.............................12
Basic System Services..........................325
biased exponent......................................25
BSS...17
BSS Section..35
buffer..256
Buffering Algorithm.............................257
byte addressable..............................15, 132
cache memory...9
Cache Memory.................................14, 19
call code..197
call frame..178
Call Frame..178
call-by-reference...................................175
call-by-value...175
callee...175
Callee..181, 184
caller...175
Caller..181, 183
Calling Convention...............................175
Calling System Services.......................197
Central Processing Unit............................9
character...28
code generation.......................................47

Page 349

Index

Alphabetical Index

Code Injection......................................240
Code Injection Protections...................241
Code to Inject.......................................237
Command Line Arguments..................245
Comments...33
Compile, Assemble, and Link..............232
concurrency..287
Conditional Control Instructions..........112
Console Input..203
Console Output.....................................199
constant expression.................................46
Conversion Instructions..........................76
CPU register...10
Data Address Space Layout
Randomization......................................242
Data Execution Prevention...................242
Data Movement..............................73, 264
Data representation.................................21
Data Section..34
Data Stack Smashing Protector (or
Canaries)...242
db..34
dd..35
DDD Configuration Settings..................57
DDD Debugger.......................................55
DDD/GDB Commands Summary..........62
DDD/GDB Commands, Examples.........64
ddq..35
Debugger..52
Debugger Command, next....................172
Debugger Command, step....................172
Debugger Commands...........................172
Debugger Commands File (non-
interactive)..66
Debugging Macros...............................169
Defining Constants.................................34
dereferencing..130
Destination operand........................72, 309

Direct Memory Access.........................256
Displaying Register Contents.................60
Displaying Stack Contents.....................65
distributed computing...........................288
Distributed Computing.........................288
distributed processing...........................288
DMA...256
dq..35
dt...35
dw...35
dynamic linking......................................49
Dynamic Linking....................................49
epilogue..175
Error Codes...328
Error Terminology................................161
Example Program...................................37
Example Program, Absolute Value......283
Example Program, List Summation.....133
Example Program, Pyramid Areas and
Volumes..135
Example Program, Sum and Average. .281
Example, C++ Main / Assembly Function
..230
Example, Console Input.......................204
Example, Console Output.....................200
Example, File Read..............................217
Example, File Write..............................212
Example, Statistical Function 1 (leaf). .180
Example, Statistical Function2 (non-leaf)
..183
Example, Sum and Average.................226
Exceptions..297
Executing Programs................................58
extern..225
Extern Statement..................................225
external reference...................................48
File Control Block................................208
file descriptor................199, 203, 208, 211

Page 350

Alphabetical Index

File Modes..327
File Open..209
File Open Operations............................208
File Open/Create...................................210
File Operations Examples.....................212
File Read...211
File Write..211
First Pass...46
Flag Register...12
Floating-Point Addition........................268
Floating-Point Arithmetic Instructions.268
Floating-Point Calling Conventions.....281
Floating-Point Comparison..................277
Floating-Point Control Instructions......277
Floating-point destination register operand
..72, 309
Floating-Point Division........................273
Floating-Point Instructions...................263
Floating-Point Multiplication...............271
Floating-Point Registers.......................264
Floating-point Representation................24
Floating-Point Square Root..................275
Floating-Point Subtraction....................270
Floating-Point Values...........................263
forward reference....................................46
Function Declaration............................173
Function Source....................................228
Functions..171
General Purpose Registers......................10
GPRs...10
Hardware Interrupt...............................297
heap...17, 148
I/O buffering...255
IEEE 32-bit Representation....................25
IEEE 64-bit Representation....................27
IEEE 754 32-bit floating-point standard 24
IF statement..112
Immediate Mode Addressing...............130

Immediate value.............................72, 309
index...132
indirection...130
input buffer...256
Input/Output Buffering.........................255
Instruction Pointer Register....................12
Instruction Set Overview........................71
Integer / Floating-Point Conversion
Instructions...266
Integer Arithmetic Instructions...............80
integer numbers......................................21
Interactive Debugger Commands File....65
Interfacing with a High-Level Language
..230
Interrupt Categories..............................297
Interrupt Classification.........................296
Interrupt Processing..............................300
Interrupt Service Routine (ISR)............300
Interrupt Timing...................................296
Interrupt Types.....................................298
Interrupt Types and Levels...................298
Interrupts...295
Iteration...118
Jump Out of Range...............................115
Jump to ISR..301
Labels...112
leaf function..178
Least Significant Byte............................16
light-weight process..............................289
Linkage...174
Linker...47
Linking Multiple Files............................48
Linking Process......................................48
list file...43
List File...43
List Summation....................................133
little-endian.............................16, 150, 239
Loader...51

Page 351

Alphabetical Index

Logic Error...162
logical AND operation.........................106
logical NOT operation..........................106
logical OR operation.............................106
logical XOR operation..........................106
machine language...............17, 43, 45, 238
Macro Definition..................................166
Macros..165
Main Memory...15
memory hierarchy...........................17, 255
Memory Hierarchy.................................17
memory layout................................17, 147
Memory Mode Addressing...................130
Most Significant Byte.............................16
Multi-Line Macros................................166
Multi-user Operating System...............295
Multiple Source Files...........................225
multiprocessing.....................................288
Multiprocessing....................................288
NaN...27, 277
Narrowing conversions...........................76
Narrowing Conversions..........................76
Newline Character................................198
Next / Step..60
nexti..169
Non-interactive Debugger Commands File
..67
non-volatile memory................................8
NOP slide..241
normalized scientific notation................25
not a number...................................27, 277
Not a Number (NaN)..............................27
Notation..309
Notational Conventions..........................71
Numeric Values......................................33
object file..43
Obtaining ISR Address.........................301
offset...132

Operand Notation...........................72, 309
operands..71
operation...71
ordered floating-point comparisons......277
parallel processing................................287
Parallel Processing................................287
Parameter Passing.................................176
Parsing Command Line Arguments.....245
pop operation..145
POSIX Threads.....................................289
preserved register..................................177
Primary Storage..................................7, 19
Privilege Levels....................................299
Process Stack..145
Processing Steps...................................301
processor registers....................................9
Program Development..........................155
Program Format......................................33
prologue..175
push operation......................................145
race condition.......................................289
Race Conditions....................................290
Random Access Memory (RAM).............7
RBP...12
Red Zone..180
register..10
Register Mode Addressing...................130
Register operand.............................72, 309
Register Usage......................................177
resb...36
resd...36
resdq...36
resq...36
Resumption...302
resw...36
Return Codes..325
rFlags..12
RIP..12

Page 352

Alphabetical Index

RSP...12
Run / Continue..60
Run-time Error......................................161
S-NaN...277
saved register..177
Second Pass..46
secondary storage.....................................8
Secondary Storage..............................7, 19
section .bss..35
section .data..34
section .text...36
segment fault..237
Setting Breakpoints................................57
short-jump...115
sign extension.......................................108
sign-extend...78
signed..21
Signed Conversions................................78
Single Instruction Multiple Data............13
Single-Line Macros..............................165
Software Interrupts...............................298
source file...43
Source operand...............................72, 309
stack buffer overflow............................235
Stack Buffer Overflow.........................235
Stack Dynamic Local Variables...........172
Stack Example......................................151
stack frame..178
Stack Implementation...........................147
Stack Instructions.................................146
Stack Layout...147
Stack Operations...................................149
Stack Pointer Register............................12
stack smashing......................................235
Stack-Based Local Variables................187

Standard Calling Convention...............173
Starting DDD..55
stepi...169
string...29
Summary...190
Suspension..301
Suspension Execute ISR.......................302
Suspension Interrupt Processing Summary
..302
symbol table..46
Synchronous Interrupts.........................296
system call..197
System Services....................................197
Text Section..36
thread..289
Tool Chain..41
Two-Pass Assembler..............................45
two's complement................................22 f.
Unconditional Control Instructions......112
Understanding a Stack Buffer Overflow
..236
Unicode...29
uninitialized data............................17, 148
unordered floating-point comparisons..277
unsafe function.....................................237
unsigned..21
Unsigned Conversions............................77
Updated Linking Instructions...............171
Using a Macro......................................166
volatile memory..8
Why Buffer?...255
Widening conversions............................76
Widening Conversions...........................76
%define...165

Page 353

	1.0 Introduction
	1.1 Prerequisites
	1.2 What is Assembly Language
	1.3 Why Learn Assembly Language
	1.3.1 Gain a Better Understanding of Architecture Issues
	1.3.2 Understanding the Tool Chain
	1.3.3 Improve Algorithm Development Skills
	1.3.4 Improve Understanding of Functions/Procedures
	1.3.5 Gain an Understanding of I/O Buffering
	1.3.6 Understand Compiler Scope
	1.3.7 Introduction Multi-processing Concepts
	1.3.8 Introduction Interrupt Processing Concepts

	1.4 Additional References
	1.4.1 Ubuntu References
	1.4.2 BASH Command Line References
	1.4.3 Architecture References
	1.4.4 Tool Chain References
	1.4.4.1 YASM References
	1.4.4.2 DDD Debugger References

	2.0 Architecture Overview
	2.1 Architecture Overview
	2.2 Data Storage Sizes
	2.3 Central Processing Unit
	2.3.1 CPU Registers
	2.3.1.1 General Purpose Registers (GPRs)
	2.3.1.2 Stack Pointer Register (RSP)
	2.3.1.3 Base Pointer Register (RBP)
	2.3.1.4 Instruction Pointer Register (RIP)
	2.3.1.5 Flag Register (rFlags)
	2.3.1.6 XMM Registers

	2.3.2 Cache Memory

	2.4 Main Memory
	2.5 Memory Layout
	2.6 Memory Hierarchy
	2.7 Exercises
	2.7.1 Quiz Questions

	3.0 Data Representation
	3.1 Integer Representation
	3.1.1 Two's Complement
	3.1.2 Byte Example
	3.1.3 Word Example

	3.2 Unsigned and Signed Addition
	3.3 Floating-point Representation
	3.3.1 IEEE 32-bit Representation
	3.3.1.1 IEEE 32-bit Representation Examples
	3.3.1.1.1 Example → -7.7510
	3.3.1.1.2 Example → -0.12510
	3.3.1.1.3 Example → 4144000016

	3.3.2 IEEE 64-bit Representation
	3.3.3 Not a Number (NaN)

	3.4 Characters and Strings
	3.4.1 Character Representation
	3.4.1.1 American Standard Code for Information Interchange
	3.4.1.2 Unicode

	3.4.2 String Representation

	3.5 Exercises
	3.5.1 Quiz Questions

	4.0 Program Format
	4.1 Comments
	4.2 Numeric Values
	4.3 Defining Constants
	4.4 Data Section
	4.5 BSS Section
	4.6 Text Section
	4.7 Example Program
	4.8 Exercises
	4.8.1 Quiz Questions

	5.0 Tool Chain
	5.1 Assemble/Link/Load Overview
	5.2 Assembler
	5.2.1 Assemble Commands
	5.2.2 List File
	5.2.3 Two-Pass Assembler
	5.2.3.1 First Pass
	5.2.3.2 Second Pass

	5.2.4 Assembler Directives

	5.3 Linker
	5.3.1 Linking Multiple Files
	5.3.2 Linking Process
	5.3.3 Dynamic Linking

	5.4 Assemble/Link Script
	5.5 Loader
	5.6 Debugger
	5.7 Exercises
	5.7.1 Quiz Questions

	6.0 DDD Debugger
	6.1 Starting DDD
	6.1.1 DDD Configuration Settings

	6.2 Program Execution with DDD
	6.2.1 Setting Breakpoints
	6.2.2 Executing Programs
	6.2.2.1 Run / Continue
	6.2.2.2 Next / Step

	6.2.3 Displaying Register Contents
	6.2.4 DDD/GDB Commands Summary
	6.2.4.1 DDD/GDB Commands, Examples

	6.2.5 Displaying Stack Contents
	6.2.6 Interactive Debugger Commands File
	6.2.6.1 Debugger Commands File (non-interactive)
	6.2.6.2 Non-interactive Debugger Commands File

	6.3 Exercises
	6.3.1 Quiz Questions
	6.3.2 Suggested Projects

	7.0 Instruction Set Overview
	7.1 Notational Conventions
	7.1.1 Operand Notation

	7.2 Data Movement
	7.3 Addresses and Values
	7.4 Conversion Instructions
	7.4.1 Narrowing Conversions
	7.4.2 Widening Conversions
	7.4.2.1 Unsigned Conversions
	7.4.2.2 Signed Conversions

	7.5 Integer Arithmetic Instructions
	7.5.1 Addition
	7.5.1.1 Addition with Carry

	7.5.2 Subtraction
	7.5.3 Integer Multiplication
	7.5.3.1 Unsigned Multiplication
	7.5.3.2 Signed Multiplication

	7.5.4 Integer Division

	7.6 Logical Instructions
	7.6.1 Logical Operations
	7.6.2 Shift Operations
	7.6.2.1 Logical Shift
	7.6.2.2 Arithmetic Shift

	7.6.3 Rotate Operations

	7.7 Control Instructions
	7.7.1 Labels
	7.7.2 Unconditional Control Instructions
	7.7.3 Conditional Control Instructions
	7.7.3.1 Jump Out of Range

	7.7.4 Iteration

	7.8 Example Program, Sum of Squares
	7.9 Exercises
	7.9.1 Quiz Questions
	7.9.2 Suggested Projects

	8.0 Addressing Modes
	8.1 Addresses and Values
	8.1.1 Register Mode Addressing
	8.1.2 Immediate Mode Addressing
	8.1.3 Memory Mode Addressing

	8.2 Example Program, List Summation
	8.3 Example Program, Pyramid Areas and Volumes
	8.4 Exercises
	8.4.1 Quiz Questions
	8.4.2 Suggested Projects

	9.0 Process Stack
	9.1 Stack Example
	9.2 Stack Instructions
	9.3 Stack Implementation
	9.3.1 Stack Layout
	9.3.2 Stack Operations

	9.4 Stack Example
	9.5 Exercises
	9.5.1 Quiz Questions
	9.5.2 Suggested Projects

	10.0 Program Development
	10.1 Understand the Problem
	10.2 Create the Algorithm
	10.3 Implement the Program
	10.4 Test/Debug the Program
	10.5 Error Terminology
	10.5.1 Assembler Error
	10.5.2 Run-time Error
	10.5.3 Logic Error

	10.6 Exercises
	10.6.1 Quiz Questions
	10.6.2 Suggested Projects

	11.0 Macros
	11.1 Single-Line Macros
	11.2 Multi-Line Macros
	11.2.1 Macro Definition
	11.2.2 Using a Macro

	11.3 Macro Example
	11.4 Debugging Macros
	11.5 Exercises
	11.5.1 Quiz Questions
	11.5.2 Suggested Projects

	12.0 Functions
	12.1 Updated Linking Instructions
	12.2 Debugger Commands
	12.2.1 Debugger Command, next
	12.2.2 Debugger Command, step

	12.3 Stack Dynamic Local Variables
	12.4 Function Declaration
	12.5 Standard Calling Convention
	12.6 Linkage
	12.7 Argument Transmission
	12.8 Calling Convention
	12.8.1 Parameter Passing
	12.8.2 Register Usage
	12.8.3 Call Frame
	12.8.3.1 Red Zone

	12.9 Example, Statistical Function 1 (leaf)
	12.9.1 Caller
	12.9.2 Callee

	12.10 Example, Statistical Function2 (non-leaf)
	12.10.1 Caller
	12.10.2 Callee

	12.11 Stack-Based Local Variables
	12.12 Summary
	12.13 Exercises
	12.13.1 Quiz Questions
	12.13.2 Suggested Projects

	13.0 System Services
	13.1 Calling System Services
	13.2 Newline Character
	13.3 Console Output
	13.3.1 Example, Console Output

	13.4 Console Input
	13.4.1 Example, Console Input

	13.5 File Open Operations
	13.5.1 File Open
	13.5.2 File Open/Create

	13.6 File Read
	13.7 File Write
	13.8 File Operations Examples
	13.8.1 Example, File Write
	13.8.2 Example, File Read

	13.9 Exercises
	13.9.1 Quiz Questions
	13.9.2 Suggested Projects

	14.0 Multiple Source Files
	14.1 Extern Statement
	14.2 Example, Sum and Average
	14.2.1 Assembly Main
	14.2.2 Function Source
	14.2.3 Assemble and Link

	14.3 Interfacing with a High-Level Language
	14.3.1 Example, C++ Main / Assembly Function
	14.3.2 Compile, Assemble, and Link

	14.4 Exercises
	14.4.1 Quiz Questions
	14.4.2 Suggested Projects

	15.0 Stack Buffer Overflow
	15.1 Understanding a Stack Buffer Overflow
	15.2 Code to Inject
	15.3 Code Injection
	15.4 Code Injection Protections
	15.4.1 Data Stack Smashing Protector (or Canaries)
	15.4.2 Data Execution Prevention
	15.4.3 Data Address Space Layout Randomization

	15.5 Exercises
	15.5.1 Quiz Questions
	15.5.2 Suggested Projects

	16.0 Command Line Arguments
	16.1 Parsing Command Line Arguments
	16.2 High-Level Language Example
	16.3 Argument Count and Argument Vector Table
	16.4 Assembly Language Example
	16.5 Exercises
	16.5.1 Quiz Questions
	16.5.2 Suggested Projects

	17.0 Input/Output Buffering
	17.1 Why Buffer?
	17.2 Buffering Algorithm
	17.3 Exercises
	17.3.1 Quiz Questions
	17.3.2 Suggested Projects

	18.0 Floating-Point Instructions
	18.1 Floating-Point Values
	18.2 Floating-Point Registers
	18.3 Data Movement
	18.4 Integer / Floating-Point Conversion Instructions
	18.5 Floating-Point Arithmetic Instructions
	18.5.1 Floating-Point Addition
	18.5.2 Floating-Point Subtraction
	18.5.3 Floating-Point Multiplication
	18.5.4 Floating-Point Division
	18.5.5 Floating-Point Square Root

	18.6 Floating-Point Control Instructions
	18.6.1 Floating-Point Comparison

	18.7 Floating-Point Calling Conventions
	18.8 Example Program, Sum and Average
	18.9 Example Program, Absolute Value
	18.10 Exercises
	18.10.1 Quiz Questions
	18.10.2 Suggested Projects

	19.0 Parallel Processing
	19.1 Distributed Computing
	19.2 Multiprocessing
	19.2.1 POSIX Threads
	19.2.2 Race Conditions

	19.3 Exercises
	19.3.1 Quiz Questions
	19.3.2 Suggested Projects

	20.0 Interrupts
	20.1 Multi-user Operating System
	20.1.1 Interrupt Classification
	20.1.2 Interrupt Timing
	20.1.2.1 Asynchronous Interrupts
	20.1.2.2 Synchronous Interrupts

	20.1.3 Interrupt Categories
	20.1.3.1 Hardware Interrupt
	20.1.3.1.1 Exceptions

	20.1.3.2 Software Interrupts

	20.2 Interrupt Types and Levels
	20.2.1 Interrupt Types
	20.2.2 Privilege Levels

	20.3 Interrupt Processing
	20.3.1 Interrupt Service Routine (ISR)
	20.3.2 Processing Steps
	20.3.2.1 Suspension
	20.3.2.2 Obtaining ISR Address
	20.3.2.3 Jump to ISR
	20.3.2.4 Suspension Execute ISR
	20.3.2.5 Resumption

	20.4 Suspension Interrupt Processing Summary
	20.5 Exercises
	20.5.1 Quiz Questions
	20.5.2 Suggested Projects

	21.0 Appendix A – ASCII Table
	22.0 Appendix B – Instruction Set Summary
	22.1 Notation
	22.2 Data Movement Instructions
	22.3 Data Conversion instructions
	22.4 Integer Arithmetic Instructions
	22.5 Logical, Shift, and Rotate Instructions
	22.6 Control Instructions
	22.7 Stack Instructions
	22.8 Function Instructions
	22.9 Floating-Point Data Movement Instructions
	22.10 Floating-Point Data Conversion Instructions
	22.11 Floating-Point Arithmetic Instructions
	22.12 Floating-Point Control Instructions

	23.0 Appendix C – System Services
	23.1 Return Codes
	23.2 Basic System Services
	23.3 File Modes
	23.4 Error Codes

	24.0 Appendix D – Quiz Question Answers
	24.1 Quiz Question Answers, Chapter 1
	24.2 Quiz Question Answers, Chapter 2
	24.3 Quiz Question Answers, Chapter 3
	24.4 Quiz Question Answers, Chapter 4
	24.5 Quiz Question Answers, Chapter 5
	24.6 Quiz Question Answers, Chapter 6
	24.7 Quiz Question Answers, Chapter 7
	24.8 Quiz Question Answers, Chapter 8
	24.9 Quiz Question Answers, Chapter 9
	24.10 Quiz Question Answers, Chapter 10
	24.11 Quiz Question Answers, Chapter 11
	24.12 Quiz Question Answers, Chapter 12
	24.13 Quiz Question Answers, Chapter 13
	24.14 Quiz Question Answers, Chapter 14
	24.15 Quiz Question Answers, Chapter 15
	24.16 Quiz Question Answers, Chapter 16
	24.17 Quiz Question Answers, Chapter 17
	24.18 Quiz Question Answers, Chapter 18
	24.19 Quiz Question Answers, Chapter 19
	24.20 Quiz Question Answers, Chapter 20

	25.0 Alphabetical Index

