
X86-64 Architecture Guide

Reference

This handout only mentions a small subset of the rich possibilities provided by the x86-64
instruction set and architecture. For a more complete (but still readable) introduction, consult The
AMD64 Architecture Programmer’s Manual, Volume 1: Application Programming.

Registers

In the assembly syntax accepted by gcc, register names are always prefixed with %. All of these
registers are 64 bits wide.

The register file is as follows:

Register Purpose Saved across calls

%rax temp register; return value No
%rbx callee-saved Yes
%rcx used to pass 4th argument to functions No
%rdx used to pass 3rd argument to functions No
%rsp stack pointer Yes
%rbp callee-saved; base pointer Yes
%rsi used to pass 2nd argument to functions No
%rdi used to pass 1st argument to functions No
%r8 used to pass 5th argument to functions No
%r9 used to pass 6th argument to functions No
%r10-r11 temporary No
%r12-r15 callee-saved registers Yes

For the code generation phase of the project you will not be performing register allocation. You
should use %r10 and %r11 for temporary values that you load from the stack.

Instruction Set

Each mnemonic opcode presented here represents a family of instructions. Within each family,
there are variants which take different argument types (registers, immediate values, or memory
addresses) and/or argument sizes (byte, word, double-word, or quad-word). The former can be
distinguished from the prefixes of the arguments, and the latter by an optional one-letter suffix on
the mnemonic.

For example, a mov instruction which sets the value of the 64-bit %rax register to the immediate
value 3 can be written as

 movq $3, %rax

Immediate operands are always prefixed by $. Un-prefixed operands are treated as memory
addresses, and should be avoided since they are confusing.

For instructions which modify one of their operands, the operand which is modified appears
second. This differs from the convention used by Microsoft’s and Borland’s assemblers, which are

X86-64 Architecture Guide http://6.s081.scripts.mit.edu/sp18/x86-64-architecture-guide.html

1 of 3 12/7/24, 6:09 PM

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf

commonly used on DOS and Windows.

Opcode Description

Copying values

mov src, dest Copies a value from a register, immediate value or memory address
to a register or memory address.

cmove %src, %dest Copies from register %src to register %dest if the last comparison
operation had the corresponding result (cmove: equality, cmovne:
inequality, cmovg: greater, cmovl: less, cmovge: greater or equal,
cmovle: less or equal).

cmovne %src, %dest
cmovg %src, %dest
cmovl %src, %dest
cmovge %src, %dest
cmovle %src, %dest
Stack management

enter $x, $0 Sets up a procedure’s stack frame by first pushing the current value
of %rbp on to the stack, storing the current value of %rsp in %rbp,
and finally decreasing %rsp to make room for x byte-sized local
variables.

leave Removes local variables from the stack frame by restoring the old
values of %rsp and %rbp.

push src Decreases %rsp and places src at the new memory location pointed
to by %rsp. Here, src can be a register, immediate value or memory
address.

pop dest Copies the value stored at the location pointed to by %rsp to dest
and increases %rsp. Here, dest can be a register or memory
location.

Control flow

call target Jump unconditionally to target and push return value (current PC +
1) onto stack.

ret Pop the return address off the stack and jump unconditionally to this
address.

jmp target Jump unconditionally to target, which is specified as a memory
location (for example, a label).

je target Jump to target if the last comparison had the corresponding result
(je: equality; jne: inequality).jne target

Arithmetic and logic

add src, dest Add src to dest.

sub src, dest Subtract src from dest.

imul src, dest Multiply dest by src.

idiv divisor Divide rdx:rax by divisor. Store quotient in rax and store
remainder in rdx.

shr reg Shift reg to the left or right by value in cl (low 8 bits of rcx).

shl reg
ror src, dest Rotate dest to the left or right by src bits.

cmp src, dest Set flags corresponding to whether dest is less than, equal to, or
greater than src

X86-64 Architecture Guide http://6.s081.scripts.mit.edu/sp18/x86-64-architecture-guide.html

2 of 3 12/7/24, 6:09 PM

Stack Organization

Global and local variables are stored on the stack, a region of memory that is typically addressed
by offsets from the registers %rbp and %rsp. Each procedure call results in the creation of a stack
frame where the procedure can store local variables and temporary intermediate values for that
invocation.The stack is organized as follows:

Position Contents Frame

8n+16(%rbp) argument n
Previous... ...

16(%rbp) argument 7

8(%rbp) return address

Current

0(%rbp) previous %rbp value

-8(%rbp)
locals and temps...

0(%rsp)

Calling Convention

We will use the standard Linux function calling convention. The calling convention is defined in
detail in System V Application Binary Interface—AMD64 Architecture Processor Supplement. We
will summarize the calling convention as it applies to decaf.

The caller uses registers to pass the first 6 arguments to the callee. Given the arguments in left-
to-right order, the order of registers used is: %rdi, %rsi, %rdx, %rcx, %r8, and %r9. Any
remaining arguments are passed on the stack in reverse order so that they can be popped off the
stack in order.

The callee is responsible for perserving the value of registers %rbp %rbx, and %r12-r15, as these
registers are owned by the caller. The remaining registers are owned by the callee.

The callee places its return value in %rax and is responsible for cleaning up its local variables as
well as for removing the return address from the stack.

The call, enter, leave and ret instructions make it easy to follow this calling convention.

Since we follow the standard linux ABI, we can call C functions and library functions using our
callout structure. For the purposes of the project we are only going to call printf and
get_int_035. When calling printf, we must set the value of register %rax to 0 before issuing
the call instruction. This is because printf uses a variable number of arguments and %rax
specifies how many SSE registers are used for the arguments. For our purposes the value will
always be 0. Since callouts can only return an single integer value, we have provided a function
get_int_035(), which will read a single integer input from the terminal and return its integer
value. This function is included in the 6035 static library. We cannot use scanf because it returns
the number of items read.

X86-64 Architecture Guide http://6.s081.scripts.mit.edu/sp18/x86-64-architecture-guide.html

3 of 3 12/7/24, 6:09 PM

http://www.x86-64.org/documentation/abi.pdf
http://www.x86-64.org/documentation/abi.pdf
http://www.x86-64.org/documentation/abi.pdf

