
A Readers Guide to
x86 Assembly

1

Purpose and Caveats

• This guide should give you enough background to
read and understand (most) of the 64bit x86
assembly that gcc is likely to produce.
• x86 is a poorly-designed ISA. It’s a mess, but it is

the most widely used ISA in the world today.
• It breaks almost every rule of good ISA design
• Just because it is popular does not mean it’s good
• Intel and AMD have managed to engineer (at

considerable cost) their CPUs so that this ugliness has
relatively little impact on their processors’ design (more
on this later)

• There’s a nice example here
• http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax

2

Registers

3

16bit 32bit 64bit Description Notes
AX EAX RAX The accumulator register

These can be used
more or less

interchangeably

BX EBX RBX The base register
CX ECX RCX The counter
DX EDX RDX The data register
SP ESP RSP Stack pointer
BP EBP RBP Points to the base of the stack frame

Rn RnD (n = 8...15) General purpose registers
SI ESI RSI Source index for string operations
DI EDI RDI Destination index for string operations
IP EIP RIP Instruction Pointer

FLAGS Condition codes

Different names (e.g. ax vs. eax vs. rax) refer to
different parts of the same register

Assembly Syntax

• There are two syntaxes for x86 assembly
• We will use the “gnu assembler (gas) syntax”, aka

“AT&T syntax”. This different than “Intel Syntax”

• <instruction> <src1> <src2> <dst>

4

Details

5

Instruction Suffixes
b byte 8 bits
s short 16 bits
w word 16 bits
l long 32 bits
q quad 64 bits

Arguments

%<reg> Register

$nnn immediate

$label Label

MOV and addressing modes

• x86 does have loads and stores. It has mov

6

Instruction Meaning

movb $0x05, %al R[al] = 0x05

movl %eax, -4(%ebp) mem[R[ebp] -4] = R[eax]

movl -4(%ebp), %eax R[eax] = mem[R[ebp] -4]

movl $LC0, (%esp) mem[R[esp]] = $LC0 (a label)

7

Instruction Meaning

subl $0x05, %eax R[eax] = R[eax] - 0x05

subl %eax, -4(%ebp) mem[R[ebp] -4] = mem[R[ebp] -4] - R[eax]

subl -4(%ebp), %eax R[eax] = R[eax] - mem[R[ebp] -4]

Arithmetic

• Note that the amount of work per instruction
varies widely depending on the addressing mode.
• A single instruction can include at least 6 additions (for

the addressing mode), 2 memory loads, and one memory
store.

Branches
• x86 uses condition codes for branches
• Arithmetic ops set the flags register
• carry, parity, zero, sign, overflow

8

Instruction Meaning

cmpl %eax %ebx Compute %eax - %ebx, set flags register

jmp <location> Unconditional branch to <location>

je <location>
Jump to <location> if the equal flag is set (e.g.,
the two values compared by cmp are equal)

jg, jge, jl, gle, jnz, ... jump {>, >=, <, <=, != 0,}

Stack Management

9

Instruction High-level meaning Equivalent instructions

pushl %eax Push %eax onto the stack
subl $4, %esp;

movl %eax, (%esp)

popl %eax Pop %eax off the stack
movl (%esp), %eax

addl $4, %esp

leave Restore the callers stack pointer.
movl %ebp, %esp

pop %ebp

Function Calls

10

Instruction High-level meaning

call <label> Call the function. Push the return address onto the stack.

ret Jump to the return address and pop it from the stack.

leave Restore the callers stack pointer.

• Arguments are passed on
the stack
• Use push to put them there.

• Return value in register A
(eax, rax, etc)

int foo(int x,
 int y,
 int z);

...
d = foo(a, b, c);

push c
push b
push a
call foo
mov %eax, d

Accounting for Work

11

addq %eax, -4(%rbx)

t1 = %rbx-4
t2 = mem[t1]
t5 = %eax + t2
mem[t1] = t5

type count

mem 2

arithmetic 2

addq %rax, %rbx

%rbx=%rbx+%rax

type count

mem 0

arithmetic 1

movl %eax, 4(%ebx)

t1 = %ebx + 4
mem[t1] = %eax

type count

mem 1

arithmetic 1

