Conditional Processing

Computer Organization
&
Assembly Language Programming

Dr Adnan Gutub

aagutub ‘at’ uqu.edu.sa

[Adaptedfrom slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]
Most Slides contents have been arranged by Dr Muhamed Mudawar & Dr Aiman El-Maleh from Computer Engineering Dept. at KFUPM

Presentation Outline

% Boolean and Comparison Instructions

«+ Conditional Jumps

<+ Conditional Loop Instructions

« Translating Conditional Structures

« Indirect Jump and Table-Driven Selection
<+ Application: Sorting an Integer Array

Conditiond Frocessing Computer Organization & Assembly Language Programming slide 1755

AND Instruction

« Bitwise AND between each pair of matching bits
AND destination, source

+ Following operand combinations are allowed np

AND reg, reg —_— Ty Ty
AND Operands can be
0 0 0
reg, mem 8, 16, or 32 hits
[/ 0 1 0
AND reg, imm and they must be
AND mem, reg of the same size i
. e — 1 I 1
AND mem, imm
<+ AND instruction is 00111011
often used to AND 00001111
clear selected bits cleared 00001011 unchanged
Conditional Processing Computer Organization & Assembly Language Programming Side /55

Converting Characters to Uppercase

« AND instruction can convert characters to uppercase
'aA’=01100001 b'=01100010
'A'=01000001 ‘B'=01000010

« Solution: Use the AND instruction to clear bit 5

mov ecx, LENGTHOF mystring
mov esi, OFFSET mystring

L1: and BYTE PTR [esi], 11011111b ;clear bit5
inc esi

loop L1

Conditiond Frocessing Computer Organization & Assembly Language Programming lide /55

OR Instruction

+ Bitwise OR operation between each pair of matching bits
OR destination, source

+ Following operand combinations are allowed OR
OR reg, reg —— x|y | xvy

Operands can be
OR reg, mem 8, 16, or 32 bits i I
OR reg, imm and they must be I

OR mem, reg of the same size
OR mem, imm

« OR instruction is 00111011

often used to OR_ 11110000

set selected bits set 11111012) — unchanged
Conditional Processing Computer Organization & Assembly Language Programming Side /55

Converting Characters to Lowercase

+ OR instruction can convert characters to lowercase
'A'=01000001 '‘B'=01000010
'aA’=01100001 b'=01100010

« Solution: Use the OR instruction to set bit 5

mov ecx, LENGTHOF mystring
mov esi, OFFSET mystring

L1: or BYTE PTR [esi], 20h ; set bit 5
inc esi

loop L1

Conditiond Frocessing Computer Organization & Assembly Language Programming slide /55

Converting Binary Digits to ASCIT
+ OR instruction can convert a binary digit to ASCII

0 =00000000 1 =00000001

'0'=00110000 1'"=00110001

« Solution: Use the OR instruction to set bits 4 and 5

or al,30h ; Convert binary digit 0 to 9 to ASCII
« What if we want to convert an ASCII digit to binary?

« Solution: Use the AND instruction to clear bits 4to 7

and al,0Fh ; Convert ASCII '0' to '9' to binary

Condtiond Frocessing Computer Organization & Assembly Language Programming side /55

XOR Instruction

« Bitwise XOR between each pair of matching bits
XOR destination, source

% Following operand combinations are allowed yqop

XOR reg, re: —_— S
XOR 9. 169 Operands can be XY xey
reg, mem 8, 16, or 32 bits I
7 0 1 1
XOR reg, imm and they must be
1 0 1
XOR mem reg of the same size =
1 1 1
XOR mem, imm
+« XOR instruction is 00111011
often used to XO0R 11110000
invert selected bits inverted ——1100101 1 unchanged
Conditional Processing Computer Organization & Assembly Language Programming Side A/55

Affected Status Flags

FLAGS

1
1

N

L[Y[Y[alv]r N| 10 |Oo|Dp|1[T|s]|Z Al P C
ERRRERRERER AR ERR & FPEE EERERERE

EFLAGS

The six status flags are affected

String Encryption Program

¢ Tasks:
< Input a message (string) from the user
< Encrypt the message
<~ Display the encrypted message
< Decrypt the message

1. Carry Flag: Cleared by AND, OR, and XOR)
<~ Display the decrypted message
2. Overflow Flag: Cleared by AND, OR, and XOR .
) <+ Sample Output
3. Sign Flag: Copy of the sign bit in result
4. Zero Flag: Set when result is zero Enter the plain text: Attack at dawn.
. o o . Cipher text: «¢¢ATa-A¢-iAyi-Gs
5. Parity Flag: Set when parity in least-significant byte is even R AT ERCET
6. Auxiliary Flag: Undefined by AND, OR, and XOR
Conditional Processing Computer Organization & Assembly Language Programming Side /55 Conditional Processing Computer Organization & Assembly Language Programming Slide /55
Encrypting a String TEST Instruction
KEY =239 : Can be any byte value < Bitwise AND operation between each pair of bits
E;l;;MAX =128 TEST destination, source
buffer BYTE BUFMAX+1 DUP(0) o i :
bufSize DWORD BUFMAX % The flags are affected similar to the AND Instruction
- - - « However, TEST does NOT modify the destination operand
The following loop uses the XOR instruction to . . .
transform every character in a string into a new value * TEST instruction can check several bits at once
- < Example: Test whether bit O or bit 3 is setin AL
g Egix’obms'ze ' !Oiﬁgecxogri‘;eguﬁer 4 Solution: testal, 00001001b ; test bits 0 & 3
L1 < We only need to check the zero flag
xor buffer[esi], KEY ; translate a byte . _ .
inc esi point to next byte ; If zero flag => both bits 0 and 3 are clear
loop L1 ; If Not zero => either bit 0 or 3 is set
Conditional Processing Computer Organization & Assembly Language Programming Slide 1 /55 Condlitional Processing Computer Organization & Assembly Language Programming Slide 1 /55

NOT Instruction

« Inverts all the bits in a destination operand
NOT destination

< Resultis called the 1's complement

+« Destination can be a register or memory NOT
X -X
NOT reg NOT 00111011
P F T
NOT mem 11000100 inverted
T F

+ None of the Flags is affected by the NOT instruction

Condtiond Frocessing Computer Organization & Assembly Language Programming side 11755

CMP Instruction

“ CMP (Compare) instruction performs a subtraction
Syntax: CMP destination, source
Computes: destination — source
« Destination operand is NOT modified
« All six flags: OF, CF, SF, ZF, AF, and PF are affected
« CMP uses the same operand combinations as SUB

<~ Operands can be 8, 16, or 32 bits and must be of the same size

< Examples: assume EAX =5, EBX =10, and ECX =5

cmp eax, ebx ; OF=0, CF=1, SF=1, ZF=0
cmp eax, ecx ; OF=0, CF=0, SF=0, ZF=1
Conditional Processing Computer Organization & Assembly Language Programming Side 1¢/55

Unsigned Comparison

+ CMP can perform unsigned and signed comparisons
<> The destination and source operands can be unsigned or signed
« For unsigned comparison, we examine ZF and CF flags

Unsigned Comparison ZF |CF To check for
unsigned destination < unsigned source 1 equality, it is

unsigned destination > unsigned source | 0 | 0 enough to
check ZF flag

destination = source

+ CMP does a subtraction and CF is the borrow flag
CF =1 if and only if unsigned destination < unsigned source
% Assume AL =5 and BL = -1 = FFh
cmp al, bl ; Sets carry flag CF =1

Conditiond Frocessing Computer Organization & Assembly Language Programming Slide 1/55

Signed Comparison

+« For signed comparison, we examine SF, OF, and ZF

Signed Comparison Flags
signed destination < signed source | SF # OF

signed destination > signed source | SF = OF, ZF =0
destination = source ZF=1

+ Recall for subtraction, the overflow flag is set when ...
<> Operands have different signs and result sign # destination sign

“ CMP AL, BL (consider the four cases shown below)
Casel |AL=80 [BL=50 |OF=0|SF=0|AL>BL
Case2 |AL=-80 [BL=-50 |OF=0|SF=1|AL<BL
Case3 |AL= 80 [BL=-50 |OF=1|SF=1|AL>BL
Case4 |AL=-80 [BL=50 |OF=1|SF=0|AL<BL

Conditiond Frocessing Computer Organization & Assembly Language Programming lide 17/55

Next . ..

« Boolean and Comparison Instructions

« Conditional Jumps

« Conditional Loop Instructions

« Translating Conditional Structures

< Indirect Jump and Table-Driven Selection
« Application: Sorting an Integer Array

Conditiond Frocessing Computer Organization & Assembly Language Programming slide 11/55

Conditional Structures

<+ No high-level control structures in assembly language

<+ Comparisons and conditional jumps are used to ...
< Implement conditional structures such as IF statements

< Implement conditional loops

< Types of Conditional Jump Instructions
< Jumps based on specific flags
< Jumps based on equality
< Jumps based on the value of CX or ECX
< Jumps based on unsigned comparisons

< Jumps based on signed comparisons

Conditiond Frocessing Computer Organization & Assembly Language Programming slide 1/55

Jumps Based on Specific Flags

<+ Conditional Jump Instruction has the following syntax:

Jcond destination ; cond is the jump condition
Mnemonic Description Flags
ol il il
% Destination 17 Jump if zero ZF=1
Destination Label INZ Jump if not zero ZF=0
+ Prior to 386 i Jump i carry CF=1
Jump must be within | JNC Jump if not carry CF=0
—128to +127bytes [, Jump if overflow OF=1
from current location
INO Jump if not overflow OF=0
RS
“* 1A-32 18 Jump if signed SF=1
32-bit offset permits [jng Jump if not signed SF=0
jump anywhere in
Jump anyw! g Jump if parity (even) PF=1
memory i
INP Jump if not parity (odd) PF=0
Condlitional Processing Computer Organization & Assembly Language Programming Slide 1 /55

Jumps Based on Equality

Mnemonic Description

IE Jump if equal (lefiOp = rightOp)
INE Jump if not equal {{eftOp # rightOp)
JCXZ Jump if CX =0

JECXZ Jump if ECX =0

« JE is equivalentto JZ «JNE is equivalent to INZ

< JECXZ jecxz L2 ; exit loop
Checked once at the beginning | L1: -+ loop body
Terminate a loop if ECX is zero loop L1
L2:
Conditiondl Processing Computer Organization & Assembly Language Programming Side /55

Examples of Jump on Zero
+ Task: Check whether integer value in EAX is even
Solution: TEST whether the least significant bit is 0

If zero, then EAX is even, otherwise it is odd

test eax, 1 ; test bit 0 of eax
jz EvenVal ; jJump if Zero flag is set

« Task: Jump to label L1 if bits 0, 1, and 3 in AL are all set

Solution:

and al,00001011b ; clear bits except 0,1,3
cmp al,00001011b ; check bits 0,1,3
je L1 ; all set? jump to L1

Conditiond Frocessing Computer Organization & Assembly Language Programming Slide 11/55

Jumps Based on Unsigned Comparison

Mnemonic Description

JA Jump if above (if lefiOp > rightOp)

INBE Jump if not below or equal (same as JA)

JAE Jump if above or equal (if lefiOp >= righiOp)
INB Jump if not below (same as JAE)

B Jump if below (if lefiOp < rightOp)

INAE Jump if not above or equal (same as JB)

IBE Jump if below or equal (if lefiOp <= rightOp)
INA Jump if not above (same as JBE)

Task: Jump to a label if unsigned EAX is less than EBX

Solution: cmp eax, ebx JB condition
jb IsBelow CF=1
Conditional Frocessing Computer Organization & Assembly Language Programming Side 1155

Jumps Based on Signed Comparisons

Mnemonic Description

1G Jump if greater (if lefiOp > rightOp)

INLE Jump if not less than or equal (same as JG)

IGE Jump if greater than or equal (if lefiOp >= rightOp)
INL Jump if not less (same as JGE)

L Jump if less (if leftOp < rightOp)

INGE Jump if not greater than or equal (same as JL)

ILE Jump if less than or equal (if lefiOp <= rightOpy
ING Jump if not greater (same as JLE)

Task: Jump to a label if signed EAX is less than EBX

cmp eax, ebx JL condition

Solution: | :
jl IsLess OF # SF

Conditiond Frocessing Computer Organization & Assembly Language Programming Side 11755

Compare and Jump Examples

Jumpto L1 if unsigned EAX is greater than Varl

Solution: | Cmp eax, Varl JA condition
jaLl CF=0,ZF=0

Jumpto L1 if signed EAX is greater than Varl

Solution: | €Mp eax, Varl JG condition
jgL1 OF =SF,ZF=0

Jumpto L1 if signed EAX is greater than or equal to Varl

Solution: | €Mp eax, Varl JGE condition
jge L1 OF = SF
Conditional Frocessing Computer Organization & Assembly Language Programming side r¢/55

Computing the Max and Min

« Compute the Max of unsigned EAX and EBX

Application: Sequential Search

; Receives: esi = array address
; ecx = array size

mov Max, eax ; assume Max = eax ; ‘eax = search value
. cmp Max, ebx ; Returns: esi = address of found element
Solution: iae done
J search PROC USES ecx
mov Max, ebx ; Max = ebx jecxz notfound
done: L1
cmp [esi], eax ; array element = search value?
. . je found ; yes? found element
«» Compute the Min of signed EAX and EBX add esi, 4 ; no? point to next array element
; . P loop L1
Lnﬂ(:; m:: ggi , assume Min = eax notfound:
ion: ' mov esi, 0 ; if not found then esi = 0
Solution: jle done found
d mov Min, ebx » Min = ebx ret ; if found, esi = element address
one: search ENDP
Conditional Processing Computer Organization & Assembly Language Programming Slide r+/55 Conditional Processing Computer Organization & Assembly Language Programming Slide 17/55
BT Instruction Next . ..
« BT = Bit Test Instruction
% Syntax: < Boolean and Comparison Instructions
BT 1/m16, r16 +« Conditional Jumps
BT r/m32, r32 « Conditional Loop Instructions
BT r/m16, imm8 + Translating Conditional Structures
BT r/m32, immé + Indirect Jump and Table-Driven Selection
o< i i i . . .
% Copies bit 7from an operand into the Carry flag < Application: Sorting an Integer Array
< Example: jump to label L1 if bit 9 is set in AX register
bt AX, 9 ; CF=hit9
jeLl ;jump if Carry to L1
Conditional Processing Computer Organization & Assembly Language Programming slide 1/55 Conditional Processing Computer Organization & Assembly Language Programming slide rA/55

LOOPZ and LOOPE
< Syntax:
LOOPE destination
LOOPZ destination
< Logic:
< ECX=ECX-1
<~ if ECX > 0 and ZF=1, jump to destination

< Useful when scanning an array for the first element that
does not match a given value.

Conditiond Frocessing Computer Organization & Assembly Language Programming side 1/55

LOOPNZ and LOOPNE
“ Syntax:
LOOPNZ destination
LOOPNE destination
« Logic:
< ECX ~ ECX -1,
<> if ECX > 0 and ZF=0, jump to destination

« Useful when scanning an array for the first element that
matches a given value.

Conditiond Frocessing Computer Organization & Assembly Language Programming slide /55

LOOPZ Example

The following code finds the first negative value in an array

Your Turn . ..

Locate the first zero value in an array

-data If none is found, let ESI be initialized to 0
array SWORD 17,10,30,40,4,-5,8
.code data
mov esi, OFFSET array — 2 ; start before first array SWORD -3,7,20,-50,10,0,40,4
mov ecx, LENGTHOF array ; loop counter code
LL . . mov esi, OFFSET array — 2 ; start before first
add esi, 2 ; point to next element mov ecx, LENGTHOF array ; loop counter
test WORD PTR [esi], 8000h ; test sign bit L1:
loopz L1 ;ZF =1ifvalue>=0 add esi, 2 ; point to next element
jnz found ; found negative value cmp WORD PTR [esi], 0 ; check for zero
notfound: loopne L1 ; continue if not zero
. ; ESI points to last array element JE Found
. XOR ESI, ESI
found: Found:
; ESI points to first negative value ound:
Condlitional Processing Computer Organization & Assembly Language Programming Slide /55 Conditional Processing Computer Organization & Assembly Language Programming Slide ri/55
Next . .. Block-Structured IF Statements
« IF statementin high-level languages (such as C or Java)
< Boolean and Comparison Instructions <> Boolean expression (evaluates to true or false)
% Conditional Jumps < List of statements performed when the expression is true
. . <~ Optional list of statements performed when expression is false
+ Conditional Loop Instructions s s P
) . + Task: Translate IF statements into assembly language
« Translating Conditional Structures 3 ylanguag
. . . “ Example:
< Indirect Jump and Table-Driven Selection y P mov eax,varl
* Apolicati Sorti Int A cmp eax,var2
4 Ication: Sorting an Integer Arra i
* APP! g g y if(varl == var2) jne elsepart
X=1; mov X,1
else jmp next
X =2 elsepart:
mov X,2
next:
Condlitional Processing Computer Organization & Assembly Language Programming Slide /55 Condlitional Processing Computer Organization & Assembly Language Programming Slide r¢/55

Your Turn . ..

< Translate the IF statement to assembly language

< All values are unsigned

if(ebx <= ecx) cmp ebx,ecx
{ ja next
eax =5; mov eax,5
edx = 6; mov edx,6
} next:

There can be multiple correct solutions

Conditiond Frocessing Computer Organization & Assembly Language Programming side ro/55

Your Turn . ..

+« Implement the following IF in assembly language
< All variables are 32-bit signed integers

if (varl <= var2) { mov eax,varl
var3 = 10; cmp eax,var2

} jle ifpart

else { mov var3,6
var3 = 6; mov var4,7
var4d =7, jmp next

} ifpart:

mov var3,10
next:

There can be multiple correct solutions

Conditiond Frocessing Computer Organization & Assembly Language Programming ide /55

Compound Expression with AND

% HLLs use short-circuit evaluation for logical AND

« If first expression is false, second expression is skipped

if ((al > bl) && (bl > cl)) {X = 1;}

; One Possible Implementation ...
cmp al, bl ; first expression ...
ja L1 ; unsigned comparison
jmp next

L1: cmp bl,cl ; second expression ...
ja L2 ; unsigned comparison
jmp next

L2: mov X,1 ; both are true

next:

Conditional Processing Computer Organization & Assembly Language Programming Slide /55

Better Implementation for AND

| if ((al > bl) && (bl > c) {X = 1} ‘

The following implementation uses less code

By reversing the relational operator, We allow the program to
fall through to the second expression

Number of instructions is reduced from 7 to 5

cmp al,bl ; first expression...
jbe next ; quit if false
cmp bl,cl ; second expression...
jbe next ; quit if false
mov X,1 ; both are true
next:
Conditional Processing Computer Organization & Assembly Language Programming Slide /55

Your Turn . ..

< Implement the following IF in assembly language

« All values are unsigned

if ((ebx <= ecx) &&
cmp ebx,ecx
(ecx > edx)) .
{ ja next
cmp ecx,edx
eax =5; . P
jbe next
edx = 6;
} mov eax,5
mov edx,6
next:
Conditional Processing Computer Organization & Assembly Language Programming Slide /55

Application: IsDigit Procedure

Receives a character in AL

Sets the Zero flag if the character is a decimal digit

‘ if (al >="0" && al <="'9") {ZF = 1;} ‘

I1sDigit PROC
cmp al,'0’ ;AL<'0'?
jb L1 ; yes? ZF=0, return
cmp al,'9’ ;AL>'9'?
ja L1 ; yes? ZF=0, return
test al, 0 JZF=1

L1: ret

IsDigit ENDP

Conditional Processing Computer Organization & Assembly Language Programming Slide /55

Compound Expression with OR

% HLLs use short-circuit evaluation for logical OR

« If first expression is true, second expression is skipped

| if ((al > bl) || (bl > cl)) {X = 1}

+ Use fall-through to keep the code as short as possible

cmp al,bl ;is AL>BL?
ja L1 ; yes, execute if part
cmp bl,cl ;no:is BL>CL?
jbe next ; no: skip if part
L1: mov X,1 ;setXtol
next:

Conditiond Frocessing Computer Organization & Assembly Language Programming Slide ¢ 1/55

WHILE Loops

A WHILE loop can be viewed as
IF statement followed by
The body of the loop, followed by
Unconditional jump to the top of the loop

while(eax < ebx) { eax =eax + 1; }

This is a possible implementation:

top: cmp eax,ebx ; eax < ebx ?
jae next ; false? then exit loop
inc eax ; body of loop
jmp top ; repeat the loop
next:
Condittional Processing ‘Computer Organization & Assembly Language Programming slide ¢ /55

Your Turn . ..

Implement the following loop, assuming unsigned integers

while (ebx <=varl) {
ebx =ebx +5;
varl =varl- 1

}
top: cmp ebx,varl ; ebx <=varl?
ja next ; false? exit loop
add ebx,5 ; execute body of loop
dec varl
jmp top ; repeat the loop
next:
Conditional Processing Computer Organization & Assembly Language Programming Slide ¢ 755

Yet Another Solution for While

Check the loop condition at the end of the loop
No need for IMP, loop body is reduced by 1 instruction

while (ebx <= varl) {
ebx =ebx +5;
varl =varl- 1

}
cmp ebx,varl ; ebx <=varl?
ja next ; false? exit loop
top: add ebx,5 ; execute body of loop
dec varl
cmp ebx, varl ; ebx <=varl?
jbe top ; true? repeat the loop
next:
Conditional Processing Computer Organization & Assembly Language Programming Slide /55

Next . ..

< Boolean and Comparison Instructions

+« Conditional Jumps

« Conditional Loop Instructions

« Translating Conditional Structures

+ Indirect Jump and Table-Driven Selection

« Application: Sorting an Integer Array

Conditiond Frocessing Computer Organization & Assembly Language Programming slide ¢ /55

Indirect Jump

+« Direct Jump: Jump to a Labeled Destination
<~ Destination address is a constant
= Addressis encoded in the jump instruction
= Addressis an offset relative to EIP (Instruction Pointer)
« Indirect jump
<~ Destination address is a variable or register

= Address is stored in memory/register
= Address is absolute

< Syntax: IMP mem32/reg32

<~ 32-bit absolute address is stored in mem32/reg32 for FLAT
memory

« Indirect jump is used to implement switch statements

Conditiond Frocessing Computer Organization & Assembly Language Programming Slide ¢ /55

Switch Statement

+« Consider the following switch statement:
Switch (ch) {
case '0" exit();
case 'l count++; break;
case '2": count--; break;
case '3" count += 5; break;
case '4": count -= 5; break;
default : count = 0;

}
+ How to translate above statementinto assembly code?
« We can use a sequence of compares and jumps

< A better solution is to use the indirect jump

Conditiond Frocessing Computer Organization & Assembly Language Programming Slide ¢V/55

Implementing the Switch Statement

case0: 3
exit
casel: There are many case
inc count .
jmp exitswitch labels. How to jump
case2: to the correct one?
dec count
jmp exitswitch
case3: e
add count, 5 -
jmp exitswitch Answer: Define a
Casetub count. 5 jump table and use
jmp exitswitch indirect jump to jump
default to the correct label
mov count, O
exitswitch: 4

Conditiond Frocessing

Computer Organization & Assembly Language Programming Slide /55

Jump Table and Indirect Jump

« Jump Table is an array of double words
<~ Contains the case labels of the switch statement
<> Can be defined inside the same procedure of switch statement
jumptable DWORD case0,
casel, Assembler converts
case2,
labels to addresses

case3,
cased4

« Indirect jump uses jump table to jump to selected label

movzx eax, ch ; move ch to eax
sub eax,'0' ; convert ch to a number
cmp eax, 4 ;eax>47?
ja default ; default case
jmp jumptable[eax*4] ; Indirect jump
Conditional Processing Computer Organization & Assembly Language Programming Slide ¢ /55

Next . ..

< Boolean and Comparison Instructions

+« Conditional Jumps

« Conditional Loop Instructions

« Translating Conditional Structures

< Indirect Jump and Table-Driven Selection
< Application: Sorting an Integer Array

Conditiond Frocessing Computer Organization & Assembly Language Programming side /55

Bubble Sort

« Consider sorting an array of 5 elements: 51324

First Pass (4 comparisons) SX‘l 324
Compare 5 with 1 and swap: 1A5 324 (swap)
Compare 5 with 3 and swap: 13% 24 (swap)
Compare 5 with 2 and swap: 13 256 4 (swap)
Compare 5 with 4 and swap: 132 AXS (swap)

Second Pass (3 comparisons)
Compare 1 with 3 (No swap): 13,245 (no swap)
Compare 3 with 2 and swap: 12 45 (swap)
Compare 3 with 4 (No swap): 12 34 5 (no swap)

Third Pass (2 comparisons)

Compare 1 with 2 (No swap): 12 345 (no swap)
Compare 2 with 3 (No swap): 123 45 (no swap)

No swapping during 39 pass = array is now sorted

Conditiond Frocessing Computer Organization & Assembly Language Programming Slide /55

Bubble Sort Algorithm

« Algorithm: Sort array of given size

bubbleSort(array, size) {
comparisons = size
do {
comparisons--;
sorted = true; 1/ assume initially
for (i = 0; i<comparisons; i++) {
if (array[i] > array[i+1]) {
swap(arrayl[i], array[i+1]);
sorted = false;

}

} while (! sorted)

}

Conditiond Frocessing Computer Organization & Assembly Language Programming slide > /5

Bubble Sort Procedure - Slide 1 of 2

; bubbleSort: Sorts a DWORD array in ascending order
; Uses the bubble sort algorithm

; Receives: ESI = Array Address

; ECX = Array Length

; Returns: Array is sorted in place

bubbleSort PROC USES eax ecx edx

outerloop:
dec ECX ; ECX = comparisons
jz sortdone ;if ECX == 0 then we are done
mov EDX, 1 ; EDX = sorted = 1 (true)
push ECX ; save ECX = comparisons
push ESI ; save ESI = array address
Conditional Processing Computer Organization & Assembly Language Programming Slide >1/55

Bubble Sort Procedure - Slide 2 of 2

innerloop:
mov EAX,[ESI]
cmp EAX,[ESI+4] ; compare [ESI] and [ESI+4]
jle increment ; [ESI]<=[ESI+4]? don't swap

xchg EAX,[ESI+4] ; swap [ESI] and [ESI+4]
mov [ESI],EAX

mov EDX,0 ; EDX = sorted = 0 (false)
increment:
add ESI4 ; point to next element
loop innerloop ; end of inner loop
pop ESI ; restore ESI = array address
pop ECX ; restore ECX = comparisons
cmp EDX,1 ; sorted == 17
jne outerloop ; No? loop back
sortdone:
ret ; return

bubbleSort ENDP

Conditiond Frocessing Computer Organization & Assembly Language Programming Slide >+/55

Summary

« Bitwise instructions (AND, OR, XOR, NOT, TEST)
<> Manipulate individual bits in operands

« CMP: compares operands using implied subtraction
<~ Sets condition flags for later conditional jumps and loops

+ Conditional Jumps & Loops
<~ Flag values: JZ, JNZ, JC, JNC, JO, JNO, JS, JNS, JP, INP
< Equality: JE(JZ), INE (INZ), JICXZ, JECXZ
< Signed: JG (JNLE), JGE (JNL), JL (JNGE), JLE (JNG)
< Unsigned: JA (JNBE), JAE (JNB), JB (JNAE), JBE (IJNA)
< LOOPZ (LOOPE), LOOPNZ (LOOPNE)

« Indirect Jump and Jump Table

Condtiond Frocessing Computer Organization & Assembly Language Programming

slide >+/55

