
١

Conditional Processing

Computer Organization
&

Assembly Language Programming

Dr Adnan Gutub

aagutub ‘at’ uqu.edu.sa
[Adapted from slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]

Most Slides contents have been arranged by Dr Muhamed Mudawar & Dr Aiman El-Maleh from Computer Engineering Dept. at KFUPM Conditional Processing Computer Organization & Assembly Language Programming slide ٢/55

Presentation Outline

� Boolean and Comparison Instructions

� Conditional Jumps

� Conditional Loop Instructions

� Translating Conditional Structures

� Indirect Jump and Table-Driven Selection

� Application: Sorting an Integer Array

Conditional Processing Computer Organization & Assembly Language Programming slide ٣/55

AND Instruction

� Bitwise AND between each pair of matching bits

AND destination, source

� Following operand combinations are allowed

AND reg, reg

AND reg, mem

AND reg, imm

AND mem, reg

AND mem, imm

� AND instruction is
often used to
clear selected bits

AND

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 1

AND

unchangedcleared

Operands can be

8, 16, or 32 bits
and they must be

of the same size

Conditional Processing Computer Organization & Assembly Language Programming slide ٤/55

Converting Characters to Uppercase

� AND instruction can convert characters to uppercase

'a' = 0 1 1 0 0 0 0 1 'b' = 0 1 1 0 0 0 1 0

'A'= 0 1 0 0 0 0 0 1 'B'= 0 1 0 0 0 0 1 0

� Solution: Use the AND instruction to clear bit 5

mov ecx, LENGTHOF mystring

mov esi, OFFSET mystring

L1: and BYTE PTR [esi], 11011111b ; clear bit 5

inc esi

loop L1

Conditional Processing Computer Organization & Assembly Language Programming slide ٥/55

OR Instruction

� Bitwise OR operation between each pair of matching bits

OR destination, source

� Following operand combinations are allowed

OR reg, reg

OR reg, mem

OR reg, imm

OR mem, reg

OR mem, imm

� OR instruction is
often used to
set selected bits

0 0 1 1 1 0 1 1
1 1 1 1 0 0 0 0

1 1 1 1 1 0 1 1

OR

unchangedset

Operands can be

8, 16, or 32 bits
and they must be

of the same size

OR

Conditional Processing Computer Organization & Assembly Language Programming slide ٦/55

Converting Characters to Lowercase

� OR instruction can convert characters to lowercase

'A'= 0 1 0 0 0 0 0 1 'B'= 0 1 0 0 0 0 1 0

'a' = 0 1 1 0 0 0 0 1 'b' = 0 1 1 0 0 0 1 0

� Solution: Use the OR instruction to set bit 5

mov ecx, LENGTHOF mystring

mov esi, OFFSET mystring

L1: or BYTE PTR [esi], 20h ; set bit 5

inc esi

loop L1

٢

Conditional Processing Computer Organization & Assembly Language Programming slide ٧/55

Converting Binary Digits to ASCII

� OR instruction can convert a binary digit to ASCII

0 = 0 0 0 0 0 0 0 0 1 = 0 0 0 0 0 0 0 1

'0' = 0 0 1 1 0 0 0 0 '1' = 0 0 1 1 0 0 0 1

� Solution: Use the OR instruction to set bits 4 and 5

or al,30h ; Convert binary digit 0 to 9 to ASCII

�What if we want to convert an ASCII digit to binary?

� Solution: Use the AND instruction to clear bits 4 to 7

and al,0Fh ; Convert ASCII '0' to '9' to binary

Conditional Processing Computer Organization & Assembly Language Programming slide ٨/55

XOR Instruction

� Bitwise XOR between each pair of matching bits

XOR destination, source

� Following operand combinations are allowed

XOR reg, reg

XOR reg, mem

XOR reg, imm

XOR mem, reg

XOR mem, imm

� XOR instruction is
often used to
invert selected bits

0 0 1 1 1 0 1 1
1 1 1 1 0 0 0 0

1 1 0 0 1 0 1 1

XOR

unchangedinverted

Operands can be

8, 16, or 32 bits
and they must be

of the same size

XOR

Conditional Processing Computer Organization & Assembly Language Programming slide ٩/55

Affected Status Flags

The six status flags are affected

1. Carry Flag: Cleared by AND, OR, and XOR

2. Overflow Flag: Cleared by AND, OR, and XOR

3. Sign Flag: Copy of the sign bit in result

4. Zero Flag: Set when result is zero

5. Parity Flag: Set when parity in least-significant byte is even

6. Auxiliary Flag: Undefined by AND, OR, and XOR

Conditional Processing Computer Organization & Assembly Language Programming slide ١٠/55

String Encryption Program

� Tasks:

� Input a message (string) from the user

� Encrypt the message

� Display the encrypted message

� Decrypt the message

� Display the decrypted message

� Sample Output

Enter the plain text: Attack at dawn.

Cipher text: «¢¢Äîä-Ä¢-ïÄÿü-Gs

Decrypted: Attack at dawn.

Conditional Processing Computer Organization & Assembly Language Programming slide ١١/55

Encrypting a String

KEY = 239 ; Can be any byte value
BUFMAX = 128
.data
buffer BYTE BUFMAX+1 DUP(0)
bufSize DWORD BUFMAX

The following loop uses the XOR instruction to
transform every character in a string into a new value

mov ecx, bufSize ; loop counter
mov esi, 0 ; index 0 in buffer

L1:
xor buffer[esi], KEY ; translate a byte
inc esi ; point to next byte
loop L1

Conditional Processing Computer Organization & Assembly Language Programming slide ١٢/55

TEST Instruction

� Bitwise AND operation between each pair of bits

TEST destination, source

� The flags are affected similar to the AND Instruction

� However, TEST does NOT modify the destination operand

� TEST instruction can check several bits at once

� Example: Test whether bit 0 or bit 3 is set in AL

� Solution: test al, 00001001b ; test bits 0 & 3

� We only need to check the zero flag

; If zero flag => both bits 0 and 3 are clear

; If Not zero => either bit 0 or 3 is set

٣

Conditional Processing Computer Organization & Assembly Language Programming slide ١٣/55

NOT Instruction

� Inverts all the bits in a destination operand

NOT destination

� Result is called the 1's complement

� Destination can be a register or memory

NOT reg

NOT mem

� None of the Flags is affected by the NOT instruction

NOT

0 0 1 1 1 0 1 1

1 1 0 0 0 1 0 0

NOT

inverted

Conditional Processing Computer Organization & Assembly Language Programming slide ١٤/55

CMP Instruction

� CMP (Compare) instruction performs a subtraction

Syntax: CMP destination, source

Computes: destination – source

� Destination operand is NOT modified

� All six flags: OF, CF, SF, ZF, AF, and PF are affected

� CMP uses the same operand combinations as SUB
� Operands can be 8, 16, or 32 bits and must be of the same size

� Examples: assume EAX = 5, EBX = 10, and ECX = 5

cmp eax, ebx

cmp eax, ecx

; OF=0, CF=1, SF=1, ZF=0

; OF=0, CF=0, SF=0, ZF=1

Conditional Processing Computer Organization & Assembly Language Programming slide ١٥/55

Unsigned Comparison

� CMP can perform unsigned and signed comparisons

� The destination and source operands can be unsigned or signed

� For unsigned comparison, we examine ZF and CF flags

� CMP does a subtraction and CF is the borrow flag

CF = 1 if and only if unsigned destination < unsigned source

� Assume AL = 5 and BL = -1 = FFh
cmp al, bl ; Sets carry flag CF = 1

Unsigned Comparison ZF CF
unsigned destination < unsigned source 1

unsigned destination > unsigned source 0 0

destination = source 1

To check for
equality, it is
enough to

check ZF flag

Conditional Processing Computer Organization & Assembly Language Programming slide ١٦/55

Signed Comparison

� For signed comparison, we examine SF, OF, and ZF

� Recall for subtraction, the overflow flag is set when …
� Operands have different signs and result sign ≠ destination sign

� CMP AL, BL (consider the four cases shown below)

Signed Comparison Flags

signed destination < signed source SF ≠ OF

signed destination > signed source SF = OF, ZF = 0

destination = source ZF = 1

Case 1 AL = 80 BL = 50 OF = 0 SF = 0 AL > BL

Case 2 AL = -80 BL = -50 OF = 0 SF = 1 AL < BL

Case 3 AL = 80 BL = -50 OF = 1 SF = 1 AL > BL

Case 4 AL = -80 BL = 50 OF = 1 SF = 0 AL < BL

Conditional Processing Computer Organization & Assembly Language Programming slide ١٧/55

Next . . .

� Boolean and Comparison Instructions

� Conditional Jumps

� Conditional Loop Instructions

� Translating Conditional Structures

� Indirect Jump and Table-Driven Selection

� Application: Sorting an Integer Array

Conditional Processing Computer Organization & Assembly Language Programming slide ١٨/55

Conditional Structures

� No high-level control structures in assembly language

� Comparisons and conditional jumps are used to …

� Implement conditional structures such as IF statements

� Implement conditional loops

� Types of Conditional Jump Instructions

� Jumps based on specific flags

� Jumps based on equality

� Jumps based on the value of CX or ECX

� Jumps based on unsigned comparisons

� Jumps based on signed comparisons

٤

Conditional Processing Computer Organization & Assembly Language Programming slide ١٩/55

Jumps Based on Specific Flags

� Conditional Jump Instruction has the following syntax:
Jcond destination ; cond is the jump condition

� Destination
Destination Label

� Prior to 386
Jump must be within
–128 to +127 bytes
from current location

� IA-32
32-bit offset permits
jump anywhere in
memory

Conditional Processing Computer Organization & Assembly Language Programming slide ٢٠/55

Jumps Based on Equality

jecxz L2 ; exit loop

L1: . . . ; loop body

loop L1

L2:

� JE is equivalent to JZ �JNE is equivalent to JNZ

� JECXZ
Checked once at the beginning

Terminate a loop if ECX is zero

Conditional Processing Computer Organization & Assembly Language Programming slide ٢١/55

Examples of Jump on Zero

� Task: Check whether integer value in EAX is even

Solution: TEST whether the least significant bit is 0

If zero, then EAX is even, otherwise it is odd

� Task: Jump to label L1 if bits 0, 1, and 3 in AL are all set

Solution:

test eax, 1 ; test bit 0 of eax

jz EvenVal ; jump if Zero flag is set

and al,00001011b ; clear bits except 0,1,3

cmp al,00001011b ; check bits 0,1,3

je L1 ; all set? jump to L1

Conditional Processing Computer Organization & Assembly Language Programming slide ٢٢/55

Jumps Based on Unsigned Comparison

cmp eax, ebx
jb IsBelow

Task: Jump to a label if unsigned EAX is less than EBX

Solution: JB condition
CF = 1

Conditional Processing Computer Organization & Assembly Language Programming slide ٢٣/55

Jumps Based on Signed Comparisons

cmp eax, ebx
jl IsLess

Task: Jump to a label if signed EAX is less than EBX

Solution: JL condition
OF ≠ SF

Conditional Processing Computer Organization & Assembly Language Programming slide ٢٤/55

Jump to L1 if unsigned EAX is greater than Var1

Solution:

Compare and Jump Examples

cmp eax, Var1
ja L1

JA condition
CF = 0, ZF = 0

Jump to L1 if signed EAX is greater than Var1

Solution: cmp eax, Var1
jg L1

JG condition
OF = SF, ZF = 0

Jump to L1 if signed EAX is greater than or equal to Var1

Solution: cmp eax, Var1
jge L1

JGE condition
OF = SF

٥

Conditional Processing Computer Organization & Assembly Language Programming slide ٢٥/55

Computing the Max and Min

mov Max, eax ; assume Max = eax
cmp Max, ebx
jae done
mov Max, ebx ; Max = ebx

done:

� Compute the Max of unsigned EAX and EBX

Solution:

mov Min, eax ; assume Min = eax
cmp Min, ebx
jle done
mov Min, ebx ; Min = ebx

done:

� Compute the Min of signed EAX and EBX

Solution:

Conditional Processing Computer Organization & Assembly Language Programming slide ٢٦/55

Application: Sequential Search
; Receives: esi = array address
; ecx = array size
; eax = search value
; Returns: esi = address of found element

search PROC USES ecx
jecxz notfound

L1:
cmp [esi], eax ; array element = search value?
je found ; yes? found element
add esi, 4 ; no? point to next array element
loop L1

notfound:
mov esi, 0 ; if not found then esi = 0

found:
ret ; if found, esi = element address

search ENDP

Conditional Processing Computer Organization & Assembly Language Programming slide ٢٧/55

BT Instruction

� BT = Bit Test Instruction

� Syntax:

BT r/m16, r16

BT r/m32, r32

BT r/m16, imm8

BT r/m32, imm8

� Copies bit n from an operand into the Carry flag

� Example: jump to label L1 if bit 9 is set in AX register

bt AX, 9 ; CF = bit 9

jc L1 ; jump if Carry to L1

Conditional Processing Computer Organization & Assembly Language Programming slide ٢٨/55

Next . . .

� Boolean and Comparison Instructions

� Conditional Jumps

� Conditional Loop Instructions

� Translating Conditional Structures

� Indirect Jump and Table-Driven Selection

� Application: Sorting an Integer Array

Conditional Processing Computer Organization & Assembly Language Programming slide ٢٩/55

LOOPZ and LOOPE

� Syntax:

LOOPE destination

LOOPZ destination

� Logic:

� ECX = ECX – 1

� if ECX > 0 and ZF=1, jump to destination

� Useful when scanning an array for the first element that
does not match a given value.

Conditional Processing Computer Organization & Assembly Language Programming slide ٣٠/55

LOOPNZ and LOOPNE

� Syntax:

LOOPNZ destination

LOOPNE destination

� Logic:

� ECX ← ECX – 1;

� if ECX > 0 and ZF=0, jump to destination

� Useful when scanning an array for the first element that
matches a given value.

٦

Conditional Processing Computer Organization & Assembly Language Programming slide ٣١/55

LOOPZ Example

The following code finds the first negative value in an array

.data
array SWORD 17,10,30,40,4,-5,8
.code

mov esi, OFFSET array – 2 ; start before first
mov ecx, LENGTHOF array ; loop counter

L1:
add esi, 2 ; point to next element
test WORD PTR [esi], 8000h ; test sign bit
loopz L1 ; ZF = 1 if value >= 0
jnz found ; found negative value

notfound:
. . . ; ESI points to last array element

found:
. . . ; ESI points to first negative value

Conditional Processing Computer Organization & Assembly Language Programming slide ٣٢/55

Your Turn . . .

Locate the first zero value in an array

If none is found, let ESI be initialized to 0

.data
array SWORD -3,7,20,-50,10,0,40,4
.code

mov esi, OFFSET array – 2 ; start before first
mov ecx, LENGTHOF array ; loop counter

L1:
add esi, 2 ; point to next element
cmp WORD PTR [esi], 0 ; check for zero
loopne L1 ; continue if not zero
JE Found
XOR ESI, ESI
Found:

Conditional Processing Computer Organization & Assembly Language Programming slide ٣٣/55

Next . . .

� Boolean and Comparison Instructions

� Conditional Jumps

� Conditional Loop Instructions

� Translating Conditional Structures

� Indirect Jump and Table-Driven Selection

� Application: Sorting an Integer Array

Conditional Processing Computer Organization & Assembly Language Programming slide ٣٤/55

Block-Structured IF Statements

� IF statement in high-level languages (such as C or Java)
� Boolean expression (evaluates to true or false)

� List of statements performed when the expression is true

� Optional list of statements performed when expression is false

� Task: Translate IF statements into assembly language

� Example:
mov eax,var1
cmp eax,var2
jne elsepart

mov X,1
jmp next

elsepart:
mov X,2

next:

if(var1 == var2)
X = 1;

else

X = 2;

Conditional Processing Computer Organization & Assembly Language Programming slide ٣٥/55

Your Turn . . .

� Translate the IF statement to assembly language

� All values are unsigned

cmp ebx,ecx

ja next

mov eax,5

mov edx,6

next:

if(ebx <= ecx)

{

eax = 5;

edx = 6;

}

There can be multiple correct solutions

Conditional Processing Computer Organization & Assembly Language Programming slide ٣٦/55

Your Turn . . .

� Implement the following IF in assembly language

� All variables are 32-bit signed integers

mov eax,var1

cmp eax,var2

jle ifpart

mov var3,6

mov var4,7

jmp next

ifpart:

mov var3,10

next:

if (var1 <= var2) {

var3 = 10;

}

else {

var3 = 6;

var4 = 7;

}

There can be multiple correct solutions

٧

Conditional Processing Computer Organization & Assembly Language Programming slide ٣٧/55

Compound Expression with AND

� HLLs use short-circuit evaluation for logical AND

� If first expression is false, second expression is skipped

if ((al > bl) && (bl > cl)) {X = 1;}

; One Possible Implementation ...

cmp al, bl ; first expression ...

ja L1 ; unsigned comparison

jmp next

L1: cmp bl,cl ; second expression ...

ja L2 ; unsigned comparison

jmp next

L2: mov X,1 ; both are true

next:

Conditional Processing Computer Organization & Assembly Language Programming slide ٣٨/55

Better Implementation for AND

cmp al,bl ; first expression...

jbe next ; quit if false

cmp bl,cl ; second expression...

jbe next ; quit if false

mov X,1 ; both are true

next:

The following implementation uses less code

By reversing the relational operator, We allow the program to
fall through to the second expression

Number of instructions is reduced from 7 to 5

if ((al > bl) && (bl > cl)) {X = 1;}

Conditional Processing Computer Organization & Assembly Language Programming slide ٣٩/55

Your Turn . . .

� Implement the following IF in assembly language

� All values are unsigned

cmp ebx,ecx

ja next

cmp ecx,edx

jbe next

mov eax,5

mov edx,6

next:

if ((ebx <= ecx) &&

(ecx > edx))

{

eax = 5;

edx = 6;

}

Conditional Processing Computer Organization & Assembly Language Programming slide ٤٠/55

Application: IsDigit Procedure

IsDigit PROC

cmp al,'0' ; AL < '0' ?

jb L1 ; yes? ZF=0, return

cmp al,'9' ; AL > '9' ?

ja L1 ; yes? ZF=0, return

test al, 0 ; ZF = 1

L1: ret

IsDigit ENDP

Receives a character in AL

Sets the Zero flag if the character is a decimal digit

if (al >= '0' && al <= '9') {ZF = 1;}

Conditional Processing Computer Organization & Assembly Language Programming slide ٤١/55

Compound Expression with OR

� HLLs use short-circuit evaluation for logical OR

� If first expression is true, second expression is skipped

� Use fall-through to keep the code as short as possible

if ((al > bl) || (bl > cl)) {X = 1;}

cmp al,bl ; is AL > BL?

ja L1 ; yes, execute if part

cmp bl,cl ; no: is BL > CL?

jbe next ; no: skip if part

L1: mov X,1 ; set X to 1

next:

Conditional Processing Computer Organization & Assembly Language Programming slide ٤٢/55

WHILE Loops

while(eax < ebx) { eax = eax + 1; }

A WHILE loop can be viewed as

IF statement followed by

The body of the loop, followed by

Unconditional jump to the top of the loop

top: cmp eax,ebx ; eax < ebx ?

jae next ; false? then exit loop

inc eax ; body of loop

jmp top ; repeat the loop

next:

This is a possible implementation:

٨

Conditional Processing Computer Organization & Assembly Language Programming slide ٤٣/55

Your Turn . . .

top: cmp ebx,var1 ; ebx <= var1?

ja next ; false? exit loop

add ebx,5 ; execute body of loop

dec var1

jmp top ; repeat the loop

next:

while (ebx <= var1) {

ebx = ebx + 5;

var1 = var1 - 1

}

Implement the following loop, assuming unsigned integers

Conditional Processing Computer Organization & Assembly Language Programming slide ٤٤/55

Yet Another Solution for While

cmp ebx,var1 ; ebx <= var1?

ja next ; false? exit loop

top: add ebx,5 ; execute body of loop

dec var1

cmp ebx, var1 ; ebx <= var1?

jbe top ; true? repeat the loop

next:

while (ebx <= var1) {

ebx = ebx + 5;

var1 = var1 - 1

}

Check the loop condition at the end of the loop

No need for JMP, loop body is reduced by 1 instruction

Conditional Processing Computer Organization & Assembly Language Programming slide ٤٥/55

Next . . .

� Boolean and Comparison Instructions

� Conditional Jumps

� Conditional Loop Instructions

� Translating Conditional Structures

� Indirect Jump and Table-Driven Selection

� Application: Sorting an Integer Array

Conditional Processing Computer Organization & Assembly Language Programming slide ٤٦/55

Indirect Jump
� Direct Jump: Jump to a Labeled Destination

� Destination address is a constant

� Address is encoded in the jump instruction

� Address is an offset relative to EIP (Instruction Pointer)

� Indirect jump
� Destination address is a variable or register

� Address is stored in memory/register

� Address is absolute

� Syntax: JMP mem32/reg32

� 32-bit absolute address is stored in mem32/reg32 for FLAT
memory

� Indirect jump is used to implement switch statements

Conditional Processing Computer Organization & Assembly Language Programming slide ٤٧/55

Switch Statement

� Consider the following switch statement:

Switch (ch) {

case '0': exit();

case '1': count++; break;

case '2': count--; break;

case '3': count += 5; break;

case '4': count -= 5; break;

default : count = 0;

}

� How to translate above statement into assembly code?

�We can use a sequence of compares and jumps

� A better solution is to use the indirect jump

Conditional Processing Computer Organization & Assembly Language Programming slide ٤٨/55

Implementing the Switch Statement
case0:

exit
case1:

inc count
jmp exitswitch

case2:
dec count
jmp exitswitch

case3:
add count, 5
jmp exitswitch

case4:
sub count, 5
jmp exitswitch

default:
mov count, 0

exitswitch:

There are many case
labels. How to jump
to the correct one?

Answer: Define a
jump table and use

indirect jump to jump
to the correct label

٩

Conditional Processing Computer Organization & Assembly Language Programming slide ٤٩/55

Jump Table and Indirect Jump

� Jump Table is an array of double words
� Contains the case labels of the switch statement

� Can be defined inside the same procedure of switch statement

jumptable DWORD case0,
case1,
case2,
case3,
case4

� Indirect jump uses jump table to jump to selected label
movzx eax, ch ; move ch to eax
sub eax, '0' ; convert ch to a number
cmp eax, 4 ; eax > 4 ?
ja default ; default case
jmp jumptable[eax*4] ; Indirect jump

Assembler converts
labels to addresses

Conditional Processing Computer Organization & Assembly Language Programming slide ٥٠/55

Next . . .

� Boolean and Comparison Instructions

� Conditional Jumps

� Conditional Loop Instructions

� Translating Conditional Structures

� Indirect Jump and Table-Driven Selection

� Application: Sorting an Integer Array

Conditional Processing Computer Organization & Assembly Language Programming slide ٥١/55

Bubble Sort

� Consider sorting an array of 5 elements: 5 1 3 2 4
First Pass (4 comparisons) 5 1 3 2 4

Compare 5 with 1 and swap: 1 5 3 2 4 (swap)
Compare 5 with 3 and swap: 1 3 5 2 4 (swap)
Compare 5 with 2 and swap: 1 3 2 5 4 (swap)
Compare 5 with 4 and swap: 1 3 2 4 5 (swap)

Second Pass (3 comparisons)
Compare 1 with 3 (No swap): 1 3 2 4 5 (no swap)
Compare 3 with 2 and swap: 1 2 3 4 5 (swap)
Compare 3 with 4 (No swap): 1 2 3 4 5 (no swap)

Third Pass (2 comparisons)
Compare 1 with 2 (No swap): 1 2 3 4 5 (no swap)
Compare 2 with 3 (No swap): 1 2 3 4 5 (no swap)

No swapping during 3rd pass ⇒ array is now sorted

largest

Conditional Processing Computer Organization & Assembly Language Programming slide ٥٢/55

Bubble Sort Algorithm

� Algorithm: Sort array of given size

bubbleSort(array, size) {

comparisons = size

do {

comparisons--;

sorted = true; // assume initially

for (i = 0; i<comparisons; i++) {

if (array[i] > array[i+1]) {

swap(array[i], array[i+1]);

sorted = false;

}

}

} while (! sorted)

}

Conditional Processing Computer Organization & Assembly Language Programming slide ٥٣/55

Bubble Sort Procedure – Slide 1 of 2
;-- -

; bubbleSort: Sorts a DWORD array in ascending order

; Uses the bubble sort algorithm

; Receives: ESI = Array Address

; ECX = Array Length

; Returns: Array is sorted in place

;-- -

bubbleSort PROC USES eax ecx edx

outerloop:

dec ECX ; ECX = comparisons

jz sortdone ; if ECX == 0 then we are done

mov EDX, 1 ; EDX = sorted = 1 (true)

push ECX ; save ECX = comparisons

push ESI ; save ESI = array address

Conditional Processing Computer Organization & Assembly Language Programming slide ٥٤/55

Bubble Sort Procedure – Slide 2 of 2
innerloop:

mov EAX,[ESI]
cmp EAX,[ESI+4] ; compare [ESI] and [ESI+4]
jle increment ; [ESI]<=[ESI+4]? don’t swap
xchg EAX,[ESI+4] ; swap [ESI] and [ESI+4]
mov [ESI],EAX
mov EDX,0 ; EDX = sorted = 0 (false)

increment:
add ESI,4 ; point to next element
loop innerloop ; end of inner loop
pop ESI ; restore ESI = array address
pop ECX ; restore ECX = comparisons
cmp EDX,1 ; sorted == 1?
jne outerloop ; No? loop back

sortdone:
ret ; return

bubbleSort ENDP

١٠

Conditional Processing Computer Organization & Assembly Language Programming slide ٥٥/55

Summary

� Bitwise instructions (AND, OR, XOR, NOT, TEST)
� Manipulate individual bits in operands

� CMP: compares operands using implied subtraction
� Sets condition flags for later conditional jumps and loops

� Conditional Jumps & Loops
� Flag values: JZ, JNZ, JC, JNC, JO, JNO, JS, JNS, JP, JNP

� Equality: JE(JZ), JNE (JNZ), JCXZ, JECXZ

� Signed: JG (JNLE), JGE (JNL), JL (JNGE), JLE (JNG)

� Unsigned: JA (JNBE), JAE (JNB), JB (JNAE), JBE (JNA)

� LOOPZ (LOOPE), LOOPNZ (LOOPNE)

� Indirect Jump and Jump Table

