
USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

C, x86 Assembly, and the Call Stack
January 23rd, 2019

Today’s Goals
● What is the exploitation meeting?
● C, assembly, and where to learn them
● What topics will we cover next?

Announcements
● CTFs!

○ Fireshell
○ Codegate

● Engineering Expo

Reading Material
● Hacking: The Art of Exploitation

○ Available through ​USF Library​ online!
○ Live CD available on ​Starch Press website
○ Read the whole dang thing… but Section 0x200 for what’s covered today

● Phrack​ Magazine: ​Smashing the Stack for Fun and Profit
○ Intro up to Buffer Overflows (next week ;))

● C Function Call Conventions and the Stack
● A description of the lea instruction
● Yale’s ​x86 Assembly Guide

Exploitation Meeting: What is it?
● Exploitation meetings cover a wide range of computer security topics, focusing on

examining the vulnerabilities that attackers use to exploit systems
● What’s different this year?

○ Less CTF, deeper coverage, more topics
■ This club was built to play CTFs… Why Less?
■ Not enough hands-on experience can happen in a meeting time
■ Saturday CTF meetings! We can play then

○ So, does this mean no demos?
■ Demos will still be an important part of meetings, but not the center

1

https://ctftime.org/event/727
https://ctftime.org/event/719
https://goo.gl/forms/SkOZdmApIrpGVQgi1
https://ebookcentral-proquest-com.ezproxy.lib.usf.edu/lib/usf/detail.action?docID=1137538&query=Jon+Erickson
https://nostarch.com/hacking2.htm
http://phrack.org/
http://phrack.org/issues/49/14.html
https://www.csee.umbc.edu/~chang/cs313.s02/stack.shtml
https://stackoverflow.com/questions/1658294/whats-the-purpose-of-the-lea-instruction
http://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

○ Papers, citations, and readings
■ You aren’t expected to read them, but I hope you do
■ The important sections will be narrowed down
■ The majority, if not all, will be freely obtainable through USF resources
■ As a graduate student, my hope is to get you all interested in security

research

C, Assembly, and the Stack

C​ - Better than ​B
● Low level, wide spread programming language. Many drivers, operating systems, and

libraries are implemented using this language, and there are many exploits that exist in
C that we will examine.

● We won’t cover programming C in any more detail, but here is a sample program

#include ​<stdio.h>

void​ ​printIt​(​int​ n)
{

 ​int​ i;
 ​for​(i=​0​; i < n; i++) ​// Loop n times.
 {

 ​puts​(​"Hello, exploitation meeting!\n"​); ​// Print a string
 }

}

int​ ​main​()
{

 printIt(​10​);
 ​return​ ​0​;
}

● Not familiar with C? See Hacking: The Art of Exploitation, Section 0x200

Assembly
A human readable language that is even lower than C. Assembly code can be directly
assembled to machine code, and machine code can be disassembled to assembly. We will be
looking at the intel syntax for x86 assembly.

2

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/B_(programming_language)#cite_note-chist-2

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

1. Compile hello.c (an abbreviated version of the program above) with -m32 flag
2. Run the following:

objdump -M intel -D a.out | grep main -A10

3. Let’s take a look at the printIt function in assembly

0000051d​ <printIt>:
 ​51d​: 55 push​ ​ebp
 51e: 89​ e5 mov​ ​ebp​,​esp
 ​520​: 53 push​ ​ebx
 ​521​: 83​ ec ​14 sub​ ​esp​,​0x14
 ​524​: e8 f7 fe ff ff call​ ​420​ <__x86.get_pc_thunk.bx>
 ​529​: 81​ c3 af 1a ​00​ ​00 add​ ​ebx​,​0x1aaf
 52f: c7 ​45​ f4 ​00​ ​00​ ​00​ ​00 mov​ ​DWORD​ ​PTR​ [​ebp​-​0xc​],​0x0
 ​536​: eb ​16 jmp​ 54e <printIt+​0x31​>
 ​538​: 83​ ec 0c sub​ ​esp​,​0xc
 53b: 8d​ ​83​ ​38​ e6 ff ff lea​ ​eax​,[​ebx​-​0x19c8​]
 ​541​: 50 push​ ​eax
 ​542​: e8 ​69​ fe ff ff call​ 3b0 <puts@plt>
 ​547​: 83​ c4 ​10 add​ ​esp​,​0x10
 54a: 83​ ​45​ f4 ​01 add​ ​DWORD​ ​PTR​ [​ebp​-​0xc​],​0x1
 54e: 83​ ​7d​ f4 ​09 cmp​ ​DWORD​ ​PTR​ [​ebp​-​0xc​],​0x9
 ​552​: 7e e4 jle​ ​538​ <printIt+​0x1b​>
 ​554​: 90 nop

 ​555​: 8b ​5d​ fc mov​ ​ebx​,​DWORD​ ​PTR​ [​ebp​-​0x4​]
 ​558​: c9 leave

 ​559​: c3 ret

0000055a <main>:

 55a: 8d​ 4c ​24​ ​04 lea​ ​ecx​,[​esp​+​0x4​]
 55e: 83​ e4 f0 and​ ​esp​,​0xfffffff0
--

 ​575​: e8 a3 ff ff ff call​ ​51d​ <printIt>
 57a: b8 ​00​ ​00​ ​00​ ​00 mov​ ​eax​,​0x0
 57f: 83​ c4 ​04 add​ ​esp​,​0x4
 ​582​: 59 pop​ ​ecx
 ​583​: 5d pop​ ​ebp
 ​584​: 8d​ ​61​ fc lea​ ​esp​,[​ecx​-​0x4​]
 ​587​: c3 ret

Our C code in assembly

3

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

Let’s point out things we recognize:
1. Call puts! That is recognizable
2. I see add [something], 1. We added 1 in our for loop!
3. Uh.... What else?

Now let’s take a look at in Binary Ninja, a graphical disassembler with a control flow graph. In
Binja, blue lines represent unconditional jumps, green lines are taken branches, and red lines
are untaken branches.

Binary Ninja Disassembly for our program

I feel better looking at this… Let’s see what we recognize now

1. Our “puts” call
2. Our string… why does it push eax? What is in eax?
3. There is a loop where we print our string
4. The cmp operator must be part of our for loop

a. We set it to loop 10 times though.... Why 0x9?
b. The compiler is too smart for us, and knows we ONLY called it with an argument

of 10

Neat! We now understand our code by looking at the assembly. At least, we understand it’s
high-level function… Let’s begin looking at the rest of the assembly and break it down line by
line.

4

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

Registers in x86
For our purposes, you can think of registers as variables in assembly. Registers are special
memory that store values in the CPU. x86 offers a wide range of registers, some with special,
conventional meaning. Instructions will typically act on registers, changing or using the values
contained in them. The most important registers are listed below in an image from the ​x86
Assembly Guide​ from Yale. Not shown are EIP (the instruction pointer or program counter)
which points to the next instruction to be executed, and the Flags register, which contains
important ​state information​ for arithmetic operations.

5

http://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html
http://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html
http://www.c-jump.com/CIS77/ASM/Instructions/I77_0070_eflags_bits.htm

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

Some Assembly Instructions and What They Do
The following table gives a brief intro to all of the instructions seen in our assembly. This does
not include all possible instructions or all the possible formats for these instructions, but these
are, in my opinion, some of the most important and most commonly seen instructions.

Instruction Example Purpose

push {register|value} push ebp Pushes a value onto the stack, and
decrements esp (stack grows down)

Pop {register} Pop esp Pops a value from the stack into a register, and
increments esp (stack shrinks up)

mov {Destination}
{Source|value}

mov ebp, esp Moves a value from source to destination

add/sub {Destination}
{Source|value}

sub esp, 0x14
add ebx, eax

Destination = Destination + Source

call {addr} call puts Calls the function at a given address

jmp {addr} jmp 0x54e Jumps to a given address

cmp {register|address}
{register|value}

cmp eax, 0x9 Compares two values and sets the flags (EFL)
register based on the value

jle {addr} jle 0x538 Jumps to addr if flags say
A <= B (Carry and Zero flags)

The [] operator mov [eax+0x4], 0x9

Not an instruction, but important. Similar to a
pointer dereference in C. This means add
eax+0x4, then find the value pointed at by that
value. In other words, *(eax+0x4)

lea lea eax, [ecx +0x4] An important instruction, this gives the address
of a value. Somewhat similar to &p in C. In this
case, eax = ecx+0x4, which is not
dereferenced. See reading material

nop (0x90) nop Literally nothing - No operation

leave leave Set ESP to EBP, then pop EBP. This is the
function prologue. We will cover this later.

retn retn Pop eip. Identical in purpose to a return in C.
Returned values are in eax by convention

6

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

The Stack Data Structure
The stack is a common data structure seen in programming. The stack is a first-in last-out (or
last-in first-out) structure, like a stack of plates.

Stack

Top D

 C

 B

Bottom A

Pop

Top C

 B

Bottom A

Push F

Top F

 C

 B

Bottom A

The x86 Call Stack
The x86 call stack is a normal stack, but values inside of the stack have special meaning.
Values can be popped and pushed, changing the size of the stack, but instructions can access
the values inside the stack and update them by referencing the bottom of the stack. This might
seem strange, but it quickly becomes intuitive. The next page includes a diagram of the stack.
Instead of thinking of the x86 stack as a stack with values, think of it as a stack of variables!

See the reading material for more information on the stack (all of the materials above mention
the stack). The more you introduce yourself to the stack, the more familiar it becomes.

There are two special registers that monitor the stack:

EBP Typically called the Base Pointer, since it is the base of the current function’s stack

ESP The Stack Pointer, ESP points to the top of the stack

7

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

Figure taken from C Function Call Conventions
and the Stack (See Reading Material)

8

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

Back to Our Assembly…
Now that we know all of our instructions and know what the stack is, let’s take a look at our code
again.

1. First, let’s set up our stack: See “The caller's actions before the function call” at
https://www.csee.umbc.edu/~chang/cs313.s02/stack.shtml

2. Ok, so we push ebp, then move esp into ebp. See “The callee's actions after function
call” part 1 and 2, respectively.

3. Awesome, out stack is setup! Next we call __x86.get_pc_thunk.bx
a. Don’t worry about this. It simply moves the current value of the program counter

into ebx as part of C’s Position Independent Execution (PIE).
4. Next, we add to ebx.

a. Again, part of C’s PIE. Don’t worry about this either. We will cover the Global
Offset Table in later detail.

5. Our first real tricky instruction. This mov moves 0 into the address at ebp-0xc, or 12
bytes up the stack.

a. That section of the stack is local variables. This must be our i=0 instruction.
6. We jmp into the guard in our loop (the if comparison)
7. We compare the variable i with 0x9
8. We jump to our printing, since i < 0x9

9

https://www.csee.umbc.edu/~chang/cs313.s02/stack.shtml

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

9. Then we subtract 0xc from esp
a. This is likely space for alignment. ​Here are some people smarter than I

addressing this issue​, but who knows why the compiler does what it does.
b. Note that the next instruction, push, brings the size to 0x10; a perfect 16 byte

alignment.
10. We move the address of our string into eax
11. We push eax onto the stack as an argument for puts

a. Eax is the address of our string
12. We call puts
13. We add 0x10 to our stack

a. We are undoing our arguments or whatever it actually is from our call
b. Note we subtract 4 more bytes, since we also pushed the address of our string

14. Then we add 1 to i
15. …
16. Eventually (9 iterations, actually) we get to where we don’t jump into our print block
17. We perform a nop

a. Not sure why, but this is likely done for branch prediction reasons
18. We move our saved ebx back into ebx
19. Then we leave

a. ESP=EBP
b. Pop EBP

20. Retn
a. Jump to value pointed at by ESP by pop EIP

Next topics?
Suggested topics from Members

1. Wi-Fi Vulnerabilities
2. BlueTooth Vulnerabilities
3. QRcode Vulnerabilities

My topics

1. Buffer overflows, stack guard, and other mechanisms
a. Buffer overflows
b. Stack Guard (the Canary)
c. ASLR (Address Space Layout Randomization)
d. Breaking these mechanisms

2. Format Strings and FormatGuard
3. Code-reuse Attacks

a. ROP - Return-Oriented Programming
b. RILC - Return Into Lib C

4. SQL Injection and other injection attacks

10

https://stackoverflow.com/questions/9862017/stack-allocation-why-the-extra-space
https://stackoverflow.com/questions/9862017/stack-allocation-why-the-extra-space

USF WCSC Exploitation Meeting Kevin Dennis (@ktrio3)

5. Anything on this ​top 25 list
6. SetUID, linux permissions, and other linux security features

a. Not really an exploit per say… but important
7. Rootkits
8. Tools, tools, tools!

a. Pwntools
b. Angr

9. Cybersecurity in Public Transportation and other cyberphysical systems
a. Again, not typical, but any security topics are game! Plus, I’m ​biased​ on this

topic
b. Jamming Autonomous Vehicles and the ​Cherokee jeep hack​ and Stuxnet, oh my!

11

http://cwe.mitre.org/top25/
http://www.cse.usf.edu/~ligatti/papers/transitSec.pdf
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

