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1. INTRODUCTION
1.1 A short summary

We propose a new random number generator Mersenne Twister. An implemented
C-code MT19937 has the period 2?37 — 1 and 623-dimensional equidistribution
property, which seem to be best among all generators ever implemented. There
are two new ideas added to the previous twisted GFSR[Matsumoto and Kurita
1992][Matsumoto and Kurita 1994] to attain these records. One is an incomplete
array (see §3.1) to realize a Mersenne-prime period. The other is a fast algorithm to
test the primitivity of the characteristic polynomial of a linear recurrence, named
inversive-decimation method (see §4.3). This algorithm does not require even the
explicit form of the characteristic polynomial. It needs ouly (1) the defining re-
currence, and (2) some fast algorithm that obtains the present state vector from
its 1-bit output stream. The computational complexity of the inversive-decimation
method is the order of the algorithm in (2) multiplied by the degree of the char-
acteristic polynomial. To attain higher order equidistribution properties, we used
the resolution-wise lattice method (see [Tezuka 1990][Couture et al. 1993][Tezuka
1994a]), with Lenstra’s algorithm[Lenstra 1985][Lenstra et al. 1982] for successive
minima.

We stress that these algorithms make full use of the polynomial algebra over the
two-element field. There are no corresponding efficient algorithms for integers.

1.2 k-distribution: a reasonable measure of randomness

Many generators of presumably “high quality” have been proposed, but only a few
can be used for serious simulations. This seems to be because we lack a decisive def-
inition of good “randomness” for practical pseudorandom number generators, and
each researcher concentrates only on his particular set of measures for randomness.

Among many known measures, the tests based on the higher dimensional uni-
formity, such as the spectral test (c.f. [Knuth 1981]), and the k-distribution test
described below, are considered to be strongest!.

DEFINITION 1.1. A pseudorandom sequence x; of w-bit integers of period P sat-
isfying the following condition is said to be k-distributed to v-bit accuracy: let
trunc,(X) denote the number formed by the leading v bits of x, and consider P
of the kv-bit vectors

(truncy(X; ), truncy (Xip1 ), «» truncy (Xi1g—1)) (0 < i < P).

Then, each of the 2¥Y possible combinations of bits occurs the same number of times
m a period, except for the all-zero combination that occurs once less often.

For each v = 1,2, w, let k(v) denote the mazimum number such that the
sequence 18 k(v)-distributed to v-bit accuracy.

v)v

Note that the inequality 2*(
in one period, and the number of possible bit patterns in the most significant v bits

— 1 < P holds, since at most P patterns can occur

1For the importance of k-distribution property, see [Tootill et al. 1973][Fushimi and Tezuka
1983][Couture et al. 1993][Tezuka 1995][ Tezuka 1994a][Tezuka and L’Ecuyer 1991][L’Ecuyer 1996].
A concise description can be seen in [L’Ecuyer 1994].
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of the consecutive k(v) words is 2¥(*)?. Since we admit a flaw at zero, we need to
add —1. We call this the trwial upper bound.

The geometric meaning is as follows. Divide each integer x; by 2% to normalize it
into a pseudorandom real number z; in the [0, 1]-interval. Put the P points in the k-
dimensional unit cube with coordinates (2;, z;41,...,%i14—1) (1 =0,1,..., P —1),
i.e., the consecutive k tuples, for a whole period (the addition in the suffix is
considered modulo P). We equally divide each [0,1] axis into 2V pieces (in other
words, consider ouly the most significant v bits). Thus, we have partitioned the
unit cube into 2%¥ small cubes. The sequence is k-distributed to v-bit accuracy if
each cube contains the same number of points (except for the cube at the origin,
which contains one less). Consequently, the higher k(v) for each v assures higher-
dimensional equidistribution with v-bit precision. By k-distribution test, we mean
to obtain the values k(v). This test fits to the generators based on a linear recursion
over the two element field Fy (we call these generators Fo-generators).

The k-distribution has also a kind of cryptographic interpretation, as follows.
Assume that the sequence is k-distributed to v-bit accuracy, and that all the bits
in the seed are randomly given. Then, knowledge of the most significant v bits of
the first I words does not allow the user to make any statement about the most
significant v bits of the next word, if { < k. This is because every bit-pattern occurs
equally likely in the v bits of the next word, by definition of k-distribution. Thus,
if the simulated system is sensitive only to the history of the & or less previously
generated words with v-bit accuracy, then it is theoretically safe.

1.3 Number of terms in characteristic polynomial

Another criterion on the randomness of Fy-generators is the number of terms in
the characteristic polynomial of the state transition function. Many [Fy-generators
are based oun trinomials, but they show poor randomness (e.g. GFSR rejected in
an Ising-Model simulation [Ferrenberg, A.M. et al. 1992], and a slight modification
of trinomials [Fushimi 1990] rejected in [Matsumoto and Kurita 1994]). For these
defects, see [Lindholm 1968][Fredricsson 1975][Compagner 1991] [Matsumoto and
Kurita 1992][Matsumoto and Kurita 1994][Matsumoto and Kurita 1996].

As far as we know, all the known Fy-generators satisfying the following two
criteria: (1) high k-distribution properties for each v (2) characteristic polynomial
with many terms (not artificially extracted from a trinomial), are good generators
[Tezuka and L’Ecuyer 1991][L’Ecuyer 1996][Matsumoto and Kurita 1994], according
to the stringent tests and the results in the actual applications.

1.4 What we obtained: a fast, compact, huge-period generator MT

We introduce an Fy-type generator named Mersenne Twister (MT) which satisfies
the above criteria very well, compared to any previously existing generators. This
is a variant of the TGFSR algorithm introduced in [Matsumoto and Kurita 1992],
improved in [Matsumoto and Kurita 1994], and here modified so as to admit a
Mersenne-prime period. A set of good parameters is implemented as a portable
C-code named MT19937 (see Appendix C). This code can be used in any machine
with a standard C compiler (including 64-bit machines), as an integer or real num-
ber generator. Essentially the same codes are downloadable from the http-site of
Salzburg University, http://random.mat.sbg.ac.at /news/.
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This generator has a tremendously large prime period 2'??37 — 1, while consuming
a working area of only 624 words. The sequence is 623-distributed to 32 bits
accuracy. This has a huge k-distribution property to v-bit accuracy for each wv,
v=12,...,32. See Table IT in §2.2. These values are at least ten times larger
than any other implemented generators, and are near the trivial upper bound.
Although we do not list them, the k-distributions of the least significant bits are
also satisfactorily large. For example, the least significant six bits of MT19937 are
2492-dimensionally equidistributed. The characteristic polynomial has many terms
(roughly 100 or more), and has no obvious relation with a trinomial.

MT19937, as a 32-bit random integer generator, passed the diehard tests devel-
oped by Marsaglia[Marsaglia 1985]. S. Wegenkittl from the PLAB group[Hellekalek
et al. | at the University of Salzburg tested MT19937 empirically using their Load
Tests and Ultimate Load Tests, and reported that MT19937 passed them.

We compare the speed of MT19937 with other modern generators (Table I in
§1.5) in a Sun Workstation. MT is comparable to other generators?, which have
much shorter periods.

Thus, we conclude that MT is one of the most promising pseudorandom number
generators at the present time. However, it is desirable to apply other statistical
tests, too. Stringent tests to criticize MT are welcome.

1.5 Comparison with other generators

The following table shows a comparison of the speed of MT with other generators.

Table I.  Cpu-time for 107 generations and the working area
ID COMBO KISS ran_array rand taus88 TT800 MT19937
"’"‘EVQZC"S”"" 11.14 9.24 23.23 9.64 7.95 9.97 10.18
W"(rl‘v'(‘)‘r%:)"‘” 4 5 1000 1 3 25 624
period N261 ~ 2127 ~ 2129 ~ 231 ~ 288 2800 -1 219937 -1

The combined generators COMBO and KISS are downloaded from Marsaglia’s
http-site; http://stat.fsu.edu/ "geo/diehard.html. The generator ran_array
is Liischer’s discarding method for a lagged-Fibonacci generator, recommended in
[Knuth 1997]. The generator rand is a standard random number generator of the
C-library. The generator taus88 is a combined Tausworthe generator® in [L’Ecuyer
1996] (c.f. [Tezuka and L'Ecuyer 1991]). TT800, a small cousin of MT19937, is a
TGFSR generator! in [Matsumoto and Kurita 1994].

?Wegenkittl reported that the speed of MT19937 in the Dec-Alpha machine is even faster than
rand. This high-speed is probably due to the modern hardware architecture like cache memory
and pipeline processing, to which MT19937 fits well.

3This is a very fast and economical generator, which has optimized k-distribution.

477800 in [Matsumoto and Kurita 1994] is designed as a real number generator, and has a
defect at the least significant bits. The downloadable version of TT800 in Salzburg University
http://random.mat.sbg.ac.at/news/ is improved in this regard. This generator and taus88 were
the two flawless generators in the Load Tests in [Hellekalek 1997], in which most short-period
linear congruential generators and some of the inversive generators are rejected. TGFSR were
also tested in [Matsumoto and Kurita 1992][Matsumoto and Kurita 1994]. We got many emails
from the users of 1"I'800 with favorable comments. As far as we know, no test has rejected this
generator. We think that this is a consequence of the good k-distribution property of 1T1800.
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We measured the time consumed in generating 107 random numbers on a Sun
Workstation. Since ran_array discards 90% of the generated sequence, it is much
slower than others.

MT19937 and ran_array consume more memory®, but it would not be a ma-
jor problem in simulations where not so many random number generators run in
parallel. MT19937 has the longest period.

1.6 Limitation and hints for use

This generator does not create cryptographically secure random numbers as it is.
For cryptographic purposes, one needs to convert the output by a secure hashing
algorithm (see for example [Rueppel 1986]). Otherwise, by a simple linear trans-
formation (T~! where T is the tempering matrix given by (2.2) (2.5) in §2.1), the
output of MT19937 becomes a linear recurring sequence given by (2.1) in §2.1.
Then, one can easily guess the present state from a sufficiently large size of the
output. See the conditions of Proposition 4.2, and note that the recurrence satisfies
these conditions.

This generator is developed for generating [0,1]-uniform real random numbers,
with special attention paid to the most significant bits. The rejected generators
in [Ferrenberg, A.M. et al. 1992] are exactly the generators whose most significant
bits have a defect (see [Tezuka et al. 1993] for SWB, and see the weight distribution
test in [Matsumoto and Kurita 1992] for the trinomial GFSR). Thus, we think our
generator would be most suitable for a Monte Carlo simulation such as [Ferrenberg,
AM. et al. 1992]. If one needs (0,1]-random numbers, simply discard the zeros.
When one needs 64-bit integers, then one may simply concatenate two words.

2. MT ALGORITHM
2.1 Description of MT

Throughout this paper, bold letters, such as x and a, denote word vectors, which
are w-dimensional row vectors over the two-element field Fo= {0, 1}, identified with
machine words of size w (with the least significant bit at the right).

The MT algorithm generates a sequence of word vectors, which are counsidered
to be uniform pseudorandom integers between 0 and 2* — 1. Dividing by 2% — 1,
we regard each word vector as a real number in [0,1].

The algorithm is based on the following linear recurrence

Xk+n ‘= Xptm P (xiflxi‘,+1)‘4ﬂ (l” =0,1,-- ) (21)

We shall explain the notation. We have several constants: an integer n, which is the
degree of the recurrence, an integer r (hidden in the definition of x¥), 0 < r < w-1,
an integer m, 1 < m < n, and a constant w X w matrix A with entries in F,. We

give Xg,X1,...,Xp—1 as initial seeds. Then, the generator generates x, by the
above recurrence with & = 0. By putting £ = 1,2,..., the generator determines
Xnt1>Xn42, - ... In the right hand side of the recurrence, xj means “the upper w—r

5The figure for the working area of ran_array is perhaps a bit misleading. This figure of 1000
words was attained by choosing “the safest method” in [Knuth 1997], namely, discarding 90%
and using Knuth’s code. It is easy to reduce the figure to 100 by rewriting the code, but then it
becomes slower.
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bits” of x;,, and Xle “the lower r bits” of Xj41. Thus, if x = (w1, T2+, Zo),
then by definition x* is the w — r bits vector (#y—1,...,%,) and x! is the r bits
vector (z,_1,...,0). (X}|x},) is just the concatenation; namely, this is a word
vector obtained by concatenating the upper w — r bits of x; and the lower r bits of
Xp+1 in this order. Then the matrix A is multiplied from the right by this vector.
Finally add Xj4m, to this vector (< is bitwise addition modulo two), and then we
generate the next vector xj4,,.

The reason why we chose the complicated recurrence (1) will be clear in §3.1.
Here we note that if » = 0, then this recurrence reduces to the previous TGFSR
proposed in [Matsumoto and Kurita 1992][Matsumoto and Kurita 1994], and if
r=0and A =1, it reduces to GFSR[Lewis and Payne 1973].

We choose a form of the matrix A so that multiplication by A is very fast. A
candidate is

then the calculation of x4 can be done using ounly bit operations:

1 shiftright(x) ifzyg=0
XA = shiftright(x) Ga ifag =1 °

where a = (aw—1,8w—2,"",20),X = (Tw-1,Tw—2, "+, &0). Also, X}/ and X§c+1 of
the recurrence (2.1) can be calculated with bitwise AND operation. Thus the
calculation of the recurrence (2.1) is realized with bitshift, bitwise EXCLUSIVE-
OR, bitwise OR, and bitwise AND operations.

For improving the k-distribution to v-bit accuracy, we multiply each generated
word by a suitable w X w invertible matrix T from the right (called tempering in
[Matsumoto and Kurita 1994]). For the tempering matrix x — z = xT, we choose
the following successive transformations

y = X@ (X >> LL) (22)
y := y&((y <<s) AND b) (2.3)
y = yd((y <<t) AND ¢) (2.4)
z:=yod(y>>1), (2.5)

where [, s, t, and u are integers, b and c are suitable bitmasks of word size,
and (x >> u) denotes the u-bit shiftright ( (x << w) the u-bit shiftleft ). The
transformations (2.3) and (2.4) are the same as those used in [Matsumoto and
Kurita 1994]. The transformations (2.2) and (2.5) are added for MT to improve"
the least significant bits.

For executing the recurrence (2.1), it is enough to take an array of n words as
a working area, as follows. Let x[0 : n — 1] be an array of n unsigned integers

5 These do not exist in the 1"I'800 code in [Matsumoto and Kurita 1994]. The code in Salzburg
http was improved in this regard by adding (2.5).
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of word size, ¢ be an integer variable, and u,1l,a be unsigned constant integers of
word size.

Step 0. u—1---10---0 ;(bitmask for upper w — r bits)

N—0---01---1 ;(bitmask for lower » bits)
N S~

& Qy_1ay—_2---ajag ;(the last row of the matrix A)
Step 1. ¢+ — 0

x[0], x[1], - - -, x[n — 1] « “any non-zero initial values”
Step 2. y « (x[i] AND u) OR (x[(i4+1) mod n] AND 1) ;(computing (x¥|x}, ,))
Step 3. x[i] — x[(i + m) mod n] XOR (y >> 1)

XOR { 0 if the least significant bit of y =0

a if the least significant bit of y = 1 j(multiplying 4)

Step 4. ;(calculate x[{]T)
y < x][i]
v —y XOR (y >>u) ;(shiftright y by u bits and add to y)
y <y XOR ((y << s) AND b)
y <=y XOR ((y << t) AND ¢)
y—y XOR (y >> 1)
output y
Step 5. i — (i+ 1) mod n

Step 6. Goto Step 2.

By rewriting the whole array at one time, we can dispense with modulo-n oper-
ations. Thus, we need only very fast operations (see the code in Appendix C).

We have the following two classes of parameters: (1) period parameters determin-
ing the period: integer parameters w (word size), n (degree of recursion), m (middle
term), r (separation point of one word), and a vector parameter a (matrix A), and
(2) tempering parameters for k-distribution to v-bit accuracy: integer parameters
l,u, s,t and the vector parameters b, c.

2.2 Good Parameters with large k-distributions

Table IT lists some period parameters which yield the maximal period 2"*~" — 1,
and tempering parameters with good k-distribution property. The trivial upper
bound k(v) < |_”u | is shown in the same table. The table shows that we could
not attain these bounds even after tempering. One sees that k(v) tends to be near
a multiple of n. We prove this only for k(v) less than 2(n — 1), sce Proposition
B.2. This proposition explains why k(v) cannot be near to the bound |[™2="] if
|™="] < 2(n — 1). We conjecture a more general obstruction, as in the case of
[Matsumoto and Kurita 1994].

One may argue that the gap between the bounds and the attained values is a
problem, see [Tezuka 1994a]. In our opinion, “to attain alarger k(v)” is usually more
important than “to attain the upper bound in a limited working area” (although
this depends on the memory-restriction). The number of terms of the characteristic
polynomial is also shown under the ID.
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Table II. Parameters and k-distribution of Mersenne Twisters

Generator The order of equidistribution

1D Parameters k(1) k(2) k(3) k(4) k(5) k(6)

k(7) k(8) k(9)  k(10)  k(11) k(12)

(the number of k(13)  k(14)  k(15) k(16) k(17) k(18)

terms in the k(19)  k(20)  k(21)  k(22) k(23) k(24)

characteristic k(25)  k(26)  k(27)  k(28) k(29) k(30)
polynomial) k(31)  k(32)

Upper bounds 11213 5606 3737 2803 2242 1868

[ 2=T| for 1601 1401 1245 1121 1019 934

(w,n,r) =(32,351,19) 862 800 747 700 659 622

1<v<32 590 560 533 509 487 467

448 431 415 400 386 373
361 350

MT11213A (w,n,m,r) =(32,351,175,19) 11213 5606 3560 2803 2111 1756

a = E4BD75F5 1405 1401 1055 1053 709 704

u=11 703 702 701 700 356 352

s = 7,b = 655E5280 351 351 351 350 350 350

(177) t = 15,c = FFD58000 350 350 350 350 350 350
=17 350 350

MTI11213B (w,n,m,r) =(32,351,175,19) 11213 5606 3565 2803 2113 1759

a = CCABSEE7 1408 1401 1056 1053 715 704

u=11 702 702 701 700 355 352

s = 7,b = 31B6AB00 351 351 351 351 350 350

(151) t = 15,c = FFE50000 350 350 350 350 350 350
=17 350 350

Upper bounds 19937 9968 6645 4984 3987 3322

[ =] for 2848 2492 2215 1993 1812 1661

(w,n,r) =(32,624,31) 1533 1424 1329 1246 1172 1107

1 <0 <32 1049 996 949 906 866 830

797 766 738 712 687 664
643 623

MT19937 (w,n,m,r)=(32,624,397,31) 19937 9968 6240 4984 3738 3115

a = 9908BODF 2493 2492 1869 1869 1248 1246

u=11 1246 1246 1246 1246 623 623

s =7, b =9D2C5680 623 623 623 623 623 623

(135) t = 15, ¢ = EFC60000 623 623 623 623 623 623
=18 623 623

TT800 (w,n,m,r) =(32,25,7,0) 800 400 250 200 150 125

a = S8EBI'D028 100 100 75 75 50 50

u : not exist 50 50 50 50 25 25

s =7, b = 2B5B2500 25 25 25 25 25 25

(93) t = 15, ¢ = DB8B0000 25 25 25 25 25 25
1 =16 25 25

ran_array Knuth’s new recommendation. 129 64 43 32 25 21

18 16 14 12 11 10

Here we list the trivial 9 9 8 8 7 7

upper bounds. 6 6 6 5 5 5

5 4 4 4 4 4
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3. WHY MT? MERITS AND HISTORY
3.1 How we reached MT: Incomplete arrays
As is the case of any Fy-linear generating method, the MT algorithm is just an
iteration of a fixed linear transformation on a fixed vector space. In the case of
MT, the vector space is the set of the following type of arrays of (0,1)-entries, with
7 bits missing at the upper-right corner.

W r

u

Xy
X1
X2

Xp—1

We call this object an (n x w — r)-array or an incomplete array.
The state transition is given by the following linear transformation B

u U
Xo X]
X1 X2
X9 [ — X3
B
Xn—-1 Xn

?

where x,, is obtained by the defining recurrence (2.1) for & = 0. By a general the-
ory of linear recurrence (see Appendix A), each entry of the (n X w — r)-array is a
linear recurring sequence satisfying the recurrence corresponding to the character-
istic polynomial ¢ g(t) of the transformation B. The sequence attains the maximal
period 2”7 — 1 = 27*~" — 1, if and only if p(t) is primitive, i.e, ¢t generates the
multiplicative group (Fa[t]/¢p(t))”.

A great advantage from attaining this bound is that the state vector assumes
every bit-pattern in the (n X w — r)-array, once in a period, except for the zero
state. Consequently, the sequence {x,} is (n — 1)-distributed. Since any initial
seed except for zero lies on the same orbit, the choice of an initial seed does not
affect the randomness for the whole period. This is much different from the original
GFSR, in which the initialization is critical [Fushimi and Tezuka 1983].

Since (n —1) is the order of equidistribution, we would like to make n as large as
the memory restriction permits. We think that in recent computers n up to 1000
is reasonable. On the other hand, one may claim n up to 10 would be enough.
However, for example, one of SWB[Marsaglia and Zaman 1991] is 43-distributed
since the orbit is one, but failed in the Ising-Model test [Ferrenberg, A.M. et al.
1992]. The system simulated there has a “good memory” remembering a large
number of previously generated words. There are such applications where the n-
dimensional distributions for very large n hecome important.

In TGFSR, an essential bound on n comes from the difficulty of factorization.
We have to certify that the order of ¢ modulo ¢p(t) is 2¥ — 1, but then we need
all the proper factors of 2P — 1. Even a modern technique can factorize 2P — 1 only
for around p < 2000 (see for example [Brillhart et al. 1988]). For TGFSR, p = nw,

and 2" — 1 can never be a prime, unless n or w is 1. Thus, we need to factorize it.
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On the other hand, the test of primality of an integer is much easier. So, there are
many Mersenne primes (i.e., primes of the form 27 — 1) found, up to p = 1398269
(see http://www.utm.edu:80/research/primes/mersenne . shtml#known).

If we eliminate r bits from the (n X w)-array, as in MT, then the dimension of the
state space is nw —r. One can attain any number in this form, including Mersenne
exponents. Then we do not need factorization. This is the reason why we use an
(n X w — r)-array.

In determining the next state, each bit of x§ and x} must be fully reflected, since
otherwise the state space is smaller. Thus, results the recurrence (2.1).

Knuth[Knuth 1996] also informed us of the following justification of this recur-
rence. Oune might have used (x}_, |[x{) instead of (x}[x} ) in the recurrence (2.1).
The former seems more natural, since then for example the matrix $ in Appendix A
coincides with A. But he noticed that when r = w — 1, then the sequence can never
have maximal period. Actually, it is easy to check that the most significant bit of
each generated word satisfies a trinomial linear recurrence with order n, and this
does not satisfy the maximality.

3.2 Primitivity is easy for MT

Another justification of the recurrence (2.1) is that the primitivity can be eas-
ily checked, by inversive-decimation methods(§4.3). Since we chose a Mersenne-
exponent p = nw — r as the size of the incomplete array, there is an algorithm to
check the primitivity with O(Ip?) computations, where [ is the number of nonzero
terms in the characteristic polynomial. The easiest case is | = 3, and accordingly
there is a list up to p = 132049 for trinomials [Heringa, J.R. et al. 1992]. One can
implement a recurrence with such a characteristic trinomial in an incomplete array.

However, the trinomials and its “slight” modifications always show erroneous
weight distributions, as stated in §1.3. Thus, what we desire is a linear recurrence
such that its characteristic polynomial has many terms and is easily checked to be
primitive,

The recurrence of MT satisfies this. Its characteristic polynomial has experimen-
tally ~ 100 terms (see Table II), and in spite of these many terms, because of the
peculiar form of the recurrence (2.1), the primitivity can be checked with O(p?)
computations (see §4.3).

Note that for large-modulus generators, the primitivity check is a hard number
theoretic task (e.g. [Marsaglia and Zaman 1991]). This is an advantage of Fo-
generators over integer-operation generators.

3.3 k-distribution is easy for MT

It was discovered by Tezuka|Tezuka 1994b] that the k-distribution to 2-bit accuracy
of TGFSR in [Matsumoto and Kurita 1992] is very low. A follow up to this failure
was satisfactorily completed in [Matsumoto and Kurita 1994].

By the same reason, the k-distribution property of the raw sequence generated
by the recurrence (2.1) is poor, so we need to modify the output by multiplying
by a matrix T (i.e., tempering, see section §5). Then we succeed in realizing good
k-distributions.

Here we comment that spectral tests with dimension more than 100 are almost
impossible for computational reasons, for any existing generators based on large-
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modulus calculus. On the other hand, for MT, we can execute k-distribution tests
to v-bit accuracy, for £ more than 600. This is another advantage of Fo-generators
over large-modulus generators.

3.4 MT is one of multiple-recursive matrix methods (MRMM)

Soon after TGFSR was proposed, Niederreiter developed a general class of random
number generators including TGFSR, multiple-recursive matriz methods (MRMM)
[Niederreiter 1993][Niederreiter 1995]. MRMM is to generate a random vector se-
quence over Fyby the linear recurrence

Xign 1= Xpgn1 A1+ + X1 A + x40 (K=0,1,--+),

where X, are row vectors and A; are w X w matrices. MT belongs to this class,
since the defining recurrence (2.1) of MT can be written as

00 I, . 0
Xk+n :Xk+m+Xk+1 (0 I) A+Xk ( 0 0) 44./

where I,., I, , is the identity matrix of size r, w — r, respectively.

Even after tempering, the generated sequence still belongs to this class. It is easy
to see from the definition that a sequence of word vectors belongs to this class if and
only if x4, is determined by a linear transformation from the preceding n vectors
Khgorsm1 s K15+« - » Xfo- (Thus, this is nothing but a linear recurring sequence of
vector values, as stated in [Niederreiter 1993]. The important point of [Niederreiter
1995] is to analyze the properties such as discrepancy.) Since the tempering matrix
is a linear isomorphism, it preserves this property. Thus, MT can be said to be a
neat implementation of the general concept MRMM.

Unfortunately, the detailed investigation in [Niederreiter 1995] is not applicable
as it is, since he mainly considered only the case with the maximal period 2™ —1. A
modification of Niederreiter’s work to cover M'T would be possible and valuable. We
guess that MT’s performance would not be so much different from those counsidered
in [Niederreiter 1995].

4, HOW TO FIND PERIOD PARAMETERS
4.1 The difficulty in obtaining the period

Since we have chosen n and r so that nw —r = p is a large Mersenne exponent, the
primitivity can be checked by (see for example [Heringa, J.R. et al. 1992])

t* #t mod ¢p(t)
2" =t mod pp(t)

It is possible to calculate this directly, as was done previously. (See Appendix A.1
for the explicit form of ¢ 5(t)). However, this is an O(Ip?)-calculation, where [ is the
number of terms. To take the square modulo ¢g(t), we need to divide a polynomial
of degree 2p by v (t). For this, we need O(p)-times subtraction by ¢ 5(t), and each
subtraction requires O(l)-operations. We iterate this p times, which amounts to
O(Ip?). In our case, p is very large (> 10000), and according to our experiment,
the direct computation may need several years to catch a primitive polynomial.

We contrived an algorithm called the inversive-decimation method with O(p?)
operations for the primitivity test for M'T, which took only two weeks to find one
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primitive polynomial for MT with degree 19937. This algorithm may be used for
other generators as well, if the generator satisfies the condition of Proposition 4.2
below.

4.2 A criterion for primitivity
Let §°° denote the Fy-vector space of all infinite sequences of 0,1. That is,
S*i={x=(".25, 24,03, 09,21, 20) | 2; € Fo }.

Let D (delay operator) and H (decimation operator) be linear operators from
S to & defined by

D '777479?374172,75179?0) = (- '-,'77579?47373,7327-7?1)7

H( ’ '7T47T37I27’1717170) = ( " 7’1?107’1787176,T47»l?27’~170)-

Let (t) be the characteristic polynomial of a linear recurrence. Then, y satisfies
the recurrence if and ouly if ¢(D)x = 0.
It is easy to check that

DH = HD”.
Since the coefficients are in Fa, we have ¢(t?) = (t)?, and thus if p(D)y = 0 then
p(D)Hx = Hp(D?*)y = Hp(D)*x =0,

i.e., Hy also satisfies the same recurrence.
It is easy to see that if the period of y € §* is 2P — 1 then H?x = y, but the
converse may unot be true. However, the following theorem holds.

THEOREM 4.1. Let ¢(t) be a polynomial over Fy whose degree p is a Mersenne
exponent. Take x € 8 such that ¢(D)x =0 and Hx # x. Then p(t) is primitive
if and only if HPy = x.

Proof. Let V be the p-dimensional linear space
Vi={x e8™ | ¢(D)x = 0},
and 7 be a linear mapping from S to Fy defined by
T(- e, 2,21, 20) = Tg.
We consider a bilinear pairing (a|b) defined by

Fz[f]/gﬁ(t) xV — FQ
(9(t),x) = (g(D)x) = 7(g(D)x)-
This is well-defined, and non-degenerate because if 7(g(D)y) = 0 for all g(D), then
x = 0 follows from 7(D"y) = 0 for all n.
Let F be a mapping from Fy[t]/¢(t) to Fy[t]/¢(t) given by F(g(t)) = g(¢)?. Then
it is easy to check that F' is the adjoint of H, i.e.,

(F(g()Ix) = (9()[Hx)
holds (it is enough to consider the case of g(t) = t).
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The condition of the theorem is
Ker(HP — 1) 2 Ker(H — 1),
which is now equivalent to
Ker(F? — 1) 2 Ker(F —1).

This means the existence of g(t) € Fy[t]/¢(t) such that g(t)?" = g(t) and g(t)> #
g(t).
Let [ (>1) be the smallest integer such that g(t)+* = g(t). Then, since g(t)*" =
g(t), it follows that {|2P — 1, and I # 1 by the assumption. Since p is a Mersenne
exponent, [ must be at least 2P — 1. Since 0 is an orbit, this means that all non-zero
elements lie on one orbit, and it is purely periodic. Since this orbit contains 1, g(t)
is invertible and it must be a generator of (Fy[t]/¢(t))*. Moreover, the order of
(F2[t]/(t))™ must be 27 — 1. Then Fa[t]/¢(t) is a field, so ¢(t) is primitive. O

4.3 The Inversive-decimation method for the primitivity testing

ProPOSITION 4.2. (Inversie-decimation method)

Let V, the state space of the generator, be a p-dimensional vector space over T,
where p 1s a Mersenne-exponent. Let f 1V — V be a linear state transition map.
Letb: V — Fy be a linear map (e.g. looking up one bit from the state). Assume
that f and b are computable in O(1)-time.

Assume that ® : V — Fy¥ given by

®: 8 (bfP1(S), bfP2(S), ... bF(S), b(S))

18 bijective, and that the inverse map 15 computable with time complexity O(p).
Then, primitivity of the characteristic polynomaal of f can be tested with teme
complezity O(p?).

Note that the last condition is essential. The other conditions are automatically
satisfied for most efficient Fy-generators. In order to apply this algorithm, to find
a good b satisfying the last condition is the crux.

Proor. Let x be the infinite sequence (---,bf?(S),bf(S),b(S)). Since & is in-
vertible with order O(p), we can choose such an S with H(x) # x.

By Theorem 4.1, it is enough to show that the first p bits of H™ () can be
obtained from the first p bits of H™(x) with an O(p)-calculation. From the first p
bits of H™ (), we can obtain a state S, which yields H™(y) by using the inverse
of & with O(p) computations. From this state, we can generate the first 2p bits of
H™(x) with an O(2p) calculation, since f and b are of O(1). Then decimate these
2p bits. Now we obtain the first p bits of AL, with an O(p) calculation. [

The above proposition can be applied to MT in the following way. For simplicity,
assume 7 > 0. Put S = (x,,_1, -+, X1, X¥), L.e, an initial (n X w — 7)-array.

Let b be the map that takes the upper-right corner of this incomplete array. Thus,
b(S) = x1 0, the least significant bit of x;. We have to find an inverse morphism to
®, which calculates from (xp, 0,2, 1,0,...,21,0) the state S that produces this p-bit
stream at the least significant bit, with only O(p)-calculation.

If 2p_nt1,0,Tp—ntm,o and x, o are known, we can calculate x,_, 4, if r > 1, or
ZTp_n,1 if ¥ < 1. This is because by Step 2 and Step 3 of the algorithm in §2.1, the
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following equation holds between ,_,41.0s Zp—ntm 0, Tpo and Tp_pi1 1.

Tp_npil = Lp—ntm,0 P Lpo if Tp—ntl1,0 = 0
prrh Tpngmo Dxpo Dag if 2y py10=1

It is clear that the same relation holds between ;_,41,0,%i—ngm.0.Zi0 and 2,411
fori =n, n+ 1,---,p. Thus from 2y, --,2, 0, We can calculate xq 1, - Zp_pny1,1-
In general, for¢ =n,n+1,---,p, j=1,2,---,w — 1, the following equations hold:

P P w1 ifa; pnr10=0 G <)
oty Ti—ngmj—1 D251 Daj_y fw;_pi10=1"
s ) Ti—ndmj—1 Dxij if Li—n+1,0 = 0 (,] > 7‘)
i—n,j — o _ ZT).
J Ti—ntm,j—1 S5, Ti5-1 S i1 if Ti—n4+1,0 = 1

o]
I

j<r jzr
O = Tiptij (o = Ti—n,j
o = T -1 o = Ly j5-1
O = Ti—ptm,j—1 O = Tj—ntm,j—1
* = Ti—n+1,0 * = Ti—n+41,0

If 210, - %k0 and o, jo®mt1,jy 5 Than—1,j (R < k4+n—1 < p) are known, then
T 1582 jp1e Tk 1 (A J <7 =1), 0r Tg jp1.21 j4100 sZp—1 j+1 (i j > r—1) can
be calculated. Furthermore, from (z; j_1,*+,Zi0), (Timntm,j—1,"* >Ti—ntm,0), and
Li—ng1,0, We can calculate (i—n j, - %imn @i ng1,r—1>" " s Lient11 xi_n+170), Le.,

the lower (j + 1) bits of (x}",|x!_, ;) at the same time, by

(T'ifn,ja s Tienrs Ti—ntlr—1° " s Ti—nt1,1, mifnJrl,O) =
(07 07 Ty 07 Ti—pt1 ,())
+ (@ij-1,0 0 @i, i0,0)
+ (mifn+m,jfla e Tintm,ls Li—n+m,0, 0)
0 if Li—n4+1,0 = 0
+ 0) if =1
((lj71 T, @1, g, ) I Tj—nt1,0=

So, by setting yo = 0, y; = (0,---,0,z;0) ({ =1, --- ,p) and repeating the fol-
lowing recurrence from ¢ = p until ¢ = n,

0 if the least significant bit of y;_pn41 =0
a if the least significant bit of y;_p,41 =1

(y;l—w,lyi’—n+1) — Shlftleft’(y) + (0‘ T 07 Il’*TH’l,O)

y<—y:i+ Yi—n+m +
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we get S =(¥,—1, - +¥o). Now Proposition 4.2 can be applied.

Here we summarize the algorithm. Let x[0 : 2p — 1], initial[0 : n — 1] be arrays
of unsigned w-bit integers, ¢, 7, k be integer variables, and u, 11, a unsigned w-bit
integers.

Step1l. u«~1---10:--0
N ——

e 0---01---1
S~
a «— (L:::]law,; RN/ AN N
for j —~0 to n—1 do
begin
x[j] < some initial value such that x[2] # x[3]
initial[j] < x[j]
end
Step 2. for 1 —0 to p—1 do
begin
Generate 2p — n times
x[j] = x[2j — 1] (j=123.....p)
for k—~p to n do
begin
y — x[k] & x[k — n + m)]
0 if the least significant bit of x[k —n +1] =0
a if the least significant bit of x[k —n + 1] =1
y < shiftleft(y).
Set the least significant bit of y to that of x[k — n + 1]
x[k —n+1] — (u AND x[k —n +1]) OR (11 AND y)
x[k —n] «< (u AND y) OR (Il AND x[k — n])
k—k-—1
end
1 —141
end
Step 3. if (x[0] AND u) = (initial[0] AND u) and initial[j] = x[j] (j = 1,2,
, n — 1) then the period is 27 — 1 else the period is not 27 — 1.

5. HOW TO FIND TEMPERING PARAMETERS
5.1 lattice methods to obtain k-distribution to v-bit accuracy

To compute k(v) we use the lattice method developed in [Tezuka 1990][Couture
et al. 1993][Tezuka 1994a] with the algorithm in [Lenstra 1985] to find the successive
minima in the formal power series over Fo. In [Matsumoto and Kurita 1994] we
computed the k-distribution by obtaining the rank of a matrix, but this time we
could not do that because of the computational complexity O(p?).

Here, we recall briefly the method to obtain k(v) by using the lattice. Let
X1, X2,...,X;, ... be a sequence in which each bit satisfies one common linear
recurrence with primitive characteristic polynomial ¢(¢). Thus, if we put x; =
(a:i,u,,h e, mi,o), then the infinite sequences xw—1 = (L0,w—1, T1,w—15--->Liw—1,---),
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“Xo = (20,0, %1,05--++%i0,...) are subject to the recurrence given by ¢(t) (MT
satisfies this, see Appendix A.2).

Now, the I-th k-tuple up to v-bit accuracy is (ﬁrstk,(DlX“,_1 Yoo ,ﬁrst;‘,(Dle_U)),
where first;, denotes the first k bits of the sequence. Hence k-distribution to v-bit
accuracy is equivalent to the surjectivity of

I (ﬁrstk(Dl()(w,l)), .. ,ﬁrstk(D[(Xw,U))),

as a map from the integers to the nonzero vectors in the (v x k)-dimensional space
over Fy. (Then the multiplicity in one small cube would be 2’s power to the differ-
ence between the dimension of the state space and v X k.) To obtain the maximal
k =: k(v) so that the above map is surjective, we use the lattice structure. Let K
be the field of Laurent power series:

K={ > ajti|ajeFonel

j=—n

We identify each y; with a Laurent power series by

o

Xi &= Z ;ZTjJ't_j.

7=0

Let A be the polynomial ring Fo[t] C K, and consider the sub A-module L of K
spanned by the (v + 1) vectors

(Xaw—1s Xaw—2s -+ » Xer—w)> (1,0, ..., 0),(0,1,0,...,0),---,(0,...,0,1).

This can be proved to be a v-dimensional free A-submodule, i.e., a lattice. We
define the successive minima of L as follows. Define a non-Archimedean valuation
toz € K by

0 ifz=0
o] =

2% if 2 # 0 and k is the largest exponent of nonzero terms.
For each v-dimensional vector X = (4,---,z,) € K", define its norm by
X1 = maxy <i<olwi]-

DEeFINITION 5.1. Let Xq,---, X, be points in a lattice L € K of rank v. We
call Xq,---, X, a reduced basis of L over Fy if the following properties hold:
(1) Xy is a shortest nonzero vector in L.
(2) X; is a shortest vector among the vectors in L but outside the K -span
(X1, Xi1)k, foreach 1 <i < w.
The numbers o; = || X;|| are uniquely determined by the lattice, and s; = log, 0;
1 =1,---,v are called its successive minima.

THEOREM [COUTURE ET AL. 1993][TEZUKA 1994A]. The sequence X1, Xy, . ..,
Xis. .. 18 (—sy)-distributed to v-bit accuracy, where s, is the v-th successive mini-
mum of the lattice L in KV associated with the sequence.
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Thus, the calculation of k(v) is reduced to obtaining the successive minima. For
this, there is an efficient algorithm [Lenstra 1985]. Since the dimension of the state
space is large for MT, we need several programming techniques for an efficient
implementation.

We shall give only one comment: we adopted “lazy evaluation.” We keep only
one (n X w— r)-array for describing one vector in A%, and calculate the coeflicients
of t=% by generating k words. Thus, here again, we depend on the easiness to
generate the MT sequence.

The time complexity of Lenstra’s algorithmn is O(v?p?) (see [Lenstra 1985][Tezuka
1994a]), which might be larger than the time complexity O(p®) in obtaining the
rank of p x p matrix for large v. However, according to our experiments, Lenstra’s
algorithm is much faster. This could be because (1) for the rank of matrix, we
needs p? ~ 4 x 10® bits of memory, which may invoke swapping between memory
and disk, (2) O(v*p?) is the worst case, and in average the order seems to be less.

5.2 Tempering

To attain k(v) near the trivial bound, we multiply the output vector by a tempering
matrix 7. We could not make the realized values meet the trivial bound. We show
a tighter bound (Appendix B), but we could not attain that bound neither. In
addition, we have no efficient algorithm corresponding to the one in [Matsumoto
and Kurita 1994] now. So, using the same backtracking technique, accelerated by
Tezuka’s resolution-wise lattice, we searched for parameters with k(v) as near to
| =" | as possible.

Let {x;} be an MT sequence, and then define a sequence {z;} by
Z; = X,jT,

where 7' is a regular Fy-matrix representing the composition of the transformations
(2.2), (2.3), (2.4) and (2.5) described in §2.1. Since T is regular, the period of
{z;} is the same as that of {x;}. About the peculiar form of tempering and how
to search the tempering parameters, please refer to [Matsumoto and Kurita 1994].
The parameter in (2.5) is chosen so that the least significant bits have a satisfactory
k-distribution.

6. CONCLUSION

We proposed a pseudorandom number generator called Mersenne Twister. A
portable C-code MT19937 attains a far longer period and far larger k-distributions
than any previously existing generator (see Table IT). The form of recurrence is
cleverly selected so that both the generation and the parameter search are efficient
(§3). The initialization is care-free. This geunerator is as fast as other common
generators, such as the standard ANSI-C rand, and it passed several statistical
tests including diehard. Thus we can say that this is one of the most promising
generators at the present time.

As a final remark, we stress that we used efficient algorithms unique to Fy[t].
These algorithms enabled us to obtain better performance than integer-large-modulus
generators, from the viewpoint of longer periods (Proposition 4.2) and higher k-
distribution property (lattice methods in §5).
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APPENDIX
A.
A.1 Explicit form of the matrix B

The explicit form of the ((nw — r) X (nw — r))-matrix B in §3.1 is as follows:

0|I, 0 0

0/0 I, 0

0

L, 0 I.
s |t s (0 )

0 0 I, O

0 0 0|L,_,

S 0 0| 0

Forl=0,1....,
(XiqnsXign—1,- - wXElJrl) = (Xttn—1,X14n—2," ", %;') B,

holds, see the recurrence (2.1).
It is not hard to see that

@B(t) _ (t" + tT!L)TI?—V'(tW'L—] + tm—]‘)r + (Lo(t" + t‘m,)w—r(tn—1 + t‘m,—])r—1
4ot a‘r72(tn + tm‘)w—r(tn—l + tm—l) + (1‘7«,1(tn + tm)w—r
(" )T b o (T ) + a1,

where a;’s are as in §2.1.

A.2 Relation between an MT sequence and its subsequences

Let ¢ (t) be the characteristic polynomial B, and S be a state. Since ¢g(B)S =0,
each entry of the incomplete array (i.e. an entry in S, BS, B%S,...) constitutes a
bit-stream which is a solution to the linear recurrence associated with pg(¢). Thus

we get, the following proposition.

ProprosITION A.l. For an MT sequence (---,X2,X1,X{), its ith-bit subsequence
(---234,00 1,21 ;) satisfies the same linear recurring equation corresponding to ¢ 5(t),

mdependently of the choice of .

Thus, an MT sequence (--+,X2,X1,X§) attains the mazimal period 2P — 1 if and
only if its i-th bit subsequence (- - -3 ;,09 ;.21 ;) attains the mazimal period 2V — 1.

B. OBSTRUCTIONS TO OPTIMAL DISTRIBUTION

In this appendix we shall show some obstructions for MT to achieve the trivial

bound on k(v).
Prorosirion B.1. Let j < n be an tnteger. If

J(j+3)
2

v>(J+Dw—r
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holds, then the order of equidistribution k(v) to v-bit accuracy of the MT sequence
18 at most jn — 1.

This says that if v > w — £ then k(v) is at most n — 1, and that if v > ‘WT_' then
E(v) is at most 2n — 1. The former is much more restrictive than k(v) < [ ==,
for large r, such as MT19937 in Table II.

Proof. k-distribution to v-bit accuracy is equivalent to the surjectivity of the linear

mapping

TQ
(xé“,xl,...,xn,l)i(xl,x2,...,xk) e . ,
. o
where T denotes the (w x w)-tempering matrix and () denotes the matrix taking
the upper v bits, i.e. () = Id . Although we used the recurrence (2.1), as far as

the surjectivity of this mapping is concerned, we get the same result even if we use
the recurrence

Xk4n = (X%|X§C+1)A4, (]{ = 0_/ 1_/ .. .)7

by the same argument as in the proof of Theorem 2.1 in [Matsumoto and Kurita
1994]. So, from now on, we use this recurrence. Now, the dependencies of the x;’s
are described by the following diagram.

X X1 Xy Xg - Xn—1
A e Y

— Xp Xp+1 Xn+2 Xn+3 Xop—1 <
S e Y

— Xon Xon+1 Xon42 Xon43 " X3n—1 <
I N

— X3n X3n+1 X3n+2 X3n+3 " Xgn—-1 <

e

I R |

Then, for an integer j < n, the part (x{,%1,...,%;) of the initial values deter-
mines the left upper triangular region in the diagram

(XG . X1y eeennnn.  Xjs
Xns Xn+la XnJr]flv
Xjn).

Then, if k(v) > jn, the multiplication by TQ) on each vector must be surjective as a
whole. Thus the dimension of the domain (j 4+ 1)w — r is at least that of the target
](J%s)v. This shows that if k(v) > jn then @1) <@G+lw-—r. 0O

PropPosITION B.2. If k(v) > n+ max{r,w —r} — 1, then k(v) > 2(n —1).
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This shows that k(v) tends to be near to n (at most max{r,w —r} distance) if it is
less than 2(n — 1). This explains partly the absence of intermediate values of k(v)
in Table II.

Proof. We apply the simplification of the recurrence as in the above proof. More-
over, instead of the initial vector (x{,X1,...,X,—1), We use (X{,X1,...,X,_1),
where ~ denotes the mapping (x%|x!) — (x!|x*), i.e. the multiplication of R :=

Iy .. . . . .
(}) UO " ). Then, when we explicitly write down the matrix which gives the
-
upper v bits of the first n — 1 + [ values from the initial value, it becomes
Ay
Ay Ay
Ay Ay
A, As
M = A, [ pairs,
. A,
A As
A4 J

where (A2 > is the matrix RTQ (T: tempering matrix), partitioned into the first
4

A
w—r and r. Let us assume that k(v) = n+j for n+j < 2(n—1). This is equivalent
to saying that the rank of the matrix M; with I = j is equal to its width, but that
with | = 7 + 1 it is not.

The former condition is equivalent to the triviality of the kernel of M;, when
applied to column vectors from the left. So we shall obtain the kernel of these
matrices for [ = 1,2,....

Let Vi, V5 denote the v-dimensional vector space of row vectors, and W, W'
denote the row vector space of dimension w — r, r, respectively. We shall first

4 > VoV — W@ W', The existence of A; implies
Ay A
that the V; component is in 441_1(0), where the =" means the inverse image. Then,
the Vi component should be mapped by A3 to an image of A,, so the projection to
the V, component of the kernel of My is

AT A3 ATH(0).

7 rows and the last w — r rows, and ') is the matrix RATQ, partitioned to
3

consider the kernel of <

-1

The sequence satisfies k(v) = n — 1 if and only if M, has nontrivial kernel, i.e., the
kernel of A, has nontrivial intersection with A2_1A3A1_1(0). If we denote by

P = 442_1A3A1_1A4
the corresponding map from the set of subspaces of V| to itself, then this can be
stated as Ker(Ay) N ®(0) # 0.
It is not difficult to check that the kernel of M; is nontrivial if and only if Ker(‘44)ﬂ
®'(0) # 0, so the smallest such I < 2(n — 1) gives k(v) = n+1 — 2, if it exists.
Thus, to prove the proposition, it is enough to show that ®*! (0) = <I)l(0) for
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I > max{r,w — r} + 1, since then the smallest [ with Ker(4,) N ®'(0) # 0 should
satisfy | < max{r,w — r} + 1, and then k(v) = n 4+ — 2 implies the proposition.
To prove the above stability, we note that ® is a monotonic function with respect
to the inclusion. So,

0C ®0)cC ®*(0)C---.

Now, the corresponding subspaces in W, W' are increasing, but the dimensions of
W, W' are w — r, r, respectively. So after applying max{w — r,r} iterations of ®,
they will be stable. By returning to V), we know that one more application of ®
stabilizes the space. O

C. C PROGRAM

Here is a C-code for MT19937. This code works both in 32-bit and 64-bit machines.
The function genrand() returns a uniformly distributed real pseudorandom num-
ber (of type double, with 32-bit precision) in the closed interval [0,1]. The func-
tion sgenrand() sets initial values to the array mt[N]. Before using genrand(),
sgenrand () must be called with a non-zero unsigned long integer as a seed.

The generator can be modified to a 32-bit unsigned long integer generator by
changing two lines, namely, the type of the function genrand() and the output-
scheme. See the comment inside.

The magic numbers are put in the macros, so that one can easily change them
according to Table II. Essentially the same code is downloadable from the http-site
in Salzburg University (see http://random.mat.sbg.ac.at/news/).

Topher Cooper kindly enhanced the robustness in the initialization scheme. Marc
Rieffel (marc@scp.syr.edu), who uses MT19937 in a plasma simulation, reported
that by replacing the function calls by the macros, the runtime could be reduced by
37%. His code is available from ftp.scp.syr.edu/pub/havk/mt19937b-macro.c,
which also improves several other points.

/* A C-program for MT19937: Real number version */
/* genrand() generates one pseudorandom real number (double)  */
/* which is uniformly distributed on [0,1]-interval, for each */
/* call. sgenrand(seed) set initial values to the working area */

/* of 624 words. Before genrand(), sgenrand(seed) must be */
/* called once. (seed is any 32-bit integer except for 0). */
/* Integer generator is obtained by modifying two lines. */

/*  Coded by Takuji Nishimura, considering the suggestions by */
/* Topher Cooper and Marc Rieffel in July-Aug. 1997. Comments */
/* should be addressed to: matumoto@math.keio.ac.jp */

#include<stdio.h>

/* Period parameters */

#define N 624

#define M 397

#define MATRIX_A 0x9908b0df  /* constant vector a */

#define UPPER_MASK 0x80000000 /* most significant w-r bits */
#define LOWER_MASK Ox7fffffff /* least significant r bits =/
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/* Tempering parameters */

#define TEMPERING_MASK_B 0x9d2c5680
#define TEMPERING_MASK_C 0xefc60000
#define TEMPERING_SHIFT_U(y) (y >> 11)
#define TEMPERING_SHIFT_S(y) (y << 7)
#define TEMPERING_SHIFT_T(y) (y << 15)
#define TEMPERING_SHIFT_L(y) (y >> 18)

static unsigned long mt[N]; /* the array for the state vector =/
static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */

/* initializing the array with a NONZERO seed */

void

sgenrand(seed)
unsigned long seed;

{
/* setting initial seeds to mt[N] using */
/* the generator Line 25 of Table 1 in */
/* [KNUTH 1981, The Art of Computer Programming */
/¥  Vol. 2 (2nd Ed.), pp102] */
mt [0]= seed & Oxffffffff;
for (mti=1; mti<N; mti++)

mt[mti] = (69069 * mt[mti-1]) & Oxffffffff;
}

double /* generating reals */
/* unsigned long */ /* for integer generation */
genrand ()
{
unsigned long y;
static unsigned long mag01[2]={0x0, MATRIX_A};
/* mag01[x] = x * MATRIX_A for x=0,1 */

if (mti >= N) { /* generate N words at one time */
int kk;

if (mti == N+1) /% if sgenrand() has not been called, */
sgenrand (4357); /* a default initial seed is used  */

for (kk=0;kk<N-M;kk++) {
y = (mt[kk]&UPPER_MASK) | (mt [kk+1]&LOWER_MASK) ;
mt [kk] = mt[kk+M] ~ (y >> 1) ~ magOil[y & 0x1];
¥
for (;kk<N-1;kk++) {
y = (mt[kk]&UPPER_MASK) | (mt [kk+1]&LOWER_MASK) ;
mt [kk] = mt[kk+(M-D] ~ (y >> 1) ~ mag0ily & 0x1];
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}
y = (mt[N-1]&UPPER_MASK) | (mt [0] &LOWER_MASK) ;
mt[N-1] = mt[M-1] = (y >> 1) ~ magOily & 0x1];

mti = 0;

[

y = mt[mti++];

y ~= TEMPERING_SHIFT_U(y);

y "= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
y "= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
y ~= TEMPERING_SHIFT_L(y);

return ( (double)y / (unsigned long)Oxffffffff ); /* reals */
/* return y; */ /% for integer generation */

}

/* this main() outputs first 1000 generated numbers */
main()

{
int j;
sgenrand(4357); /* any nonzero integer can be used as a seed */
for (j=0; j<1000; j++) {
printf("%45f ", genrand());
if (§%8==7) printf("\n");
}
printf("\n");
¥
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