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Hashing in databases

• Hashing is a very common operation in many systems and also in 
databases
• Many internal data structures are implemented using a hash table (buffer 

cache, lock table)

• Some operators use hashing to speed things up (hash joins)

• Also used as an index and a partition strategy

• Hashing is the typical trade-off storage vs compute:
• A B+ tree sacrifices space to speed up the search

• Hashing uses compute (the hash function) to find out the slot where 
something is located
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From hashing to hash tables
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https://en.wikipedia.org/wiki/Hash_function https://en.wikipedia.org/wiki/Hash_table



Limitations of hashing

• There are many hashing functions with strong properties. In a 
database, however, the hash function has to be computationally 
cheap since it is used very often

• Perfect hash functions exist but you need a hash table as big as the 
cardinality of the attribute (4 byte keys = 4 GB table)

• The hash table has to be big enough without wasting space:
• If too small, too many collisions 
• If too big, lots of wasted space and occupying many blocks
• Growing the hash table not a cheap operation

• Hash indexes only support point queries (works for the primary key, 
does not work for almost anything else)
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Hash table collisions - chaining 

• Chaining

• When a collision occurs, add 
another entry in a linked list

• If lists are short, reasonably 
efficient

• Can already reserve space for 
the linked lists (more blocks 
but linked list traversal within 
the same block) 
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Hash table collisions – open addressing

• Open addressing

• A general strategy whereby, when 
a collision occurs, we look for an 
empty slot in the hash table using 
some rule

• Linear probing = just go to the 
next slot(s)

• Cuckoo hashing = use several hash 
functions, if collisions with first, 
use the second, if …
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Growing pains

• When the hash table is full, growing it is not easy

• Basic approach:
• Create a new, larger hash table with more buckets (typically 2x)

• Rehash all existing items

• This is too expensive
• Need to rehash every item

• Lots of random accesses

• Can simply not be done on disk (where hash indexes are mostly used)
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Extensible hashing

• Based on sharing buckets and un-sharing when needed

• Hash table buckets are mapped into blocks

• Initially, several buckets share the same block
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Extensible hashing overflow

• If a bucket gets full, then split the bucket

• Move entries as needed to new bucket
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Extensible hashing, logical doubling

• The size of the table can be doubled without immediately adding 
more space, allowing for more splitting

• Simply increase the number of buckets and the degree of sharing

• Split buckets as they become full
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Extensible hashing

• If initial space available, allows for growth without disruption

• Two pages lookups to access an item (ideally) = bucket directory and 
data block

• Bucket directory can grow independently of the data blocks

• But the doubling of the bucket directory is expensive, creating many 
unneeded entries
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Linear hashing
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Linear hashing
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Linear hashing

• The idea is to gradually increase the size of the table and redistribute 
the data
• Always split on the pointer even if overflow is somewhere else

• The pointer will eventually reach buckets with a chain, when that bucket is 
split, the data will be reorganized

• Splits can be triggered by overflows, a load factor, a maximum chain 
length, etc.

• The advantage is that the directory (list of buckets), grows page by 
page (instead of doubling)

• Once all buckets have been split, start anew
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Many variations

• These ideas can be combined in different ways (especially with 
chaining)

• Approach can be nested:
• Bucket directory points not to data blocks but to another hash table that 

points to the actual data blocks

• Helps to deal with skew
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B+ trees
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https://w6113.github.io/files/papers/btreesurvey-graefe.pdf



B-Tree
• B-tree

• Has order k

• Each node (except the root) has 
between k/2 and k child nodes

• The root has at least two children 
(unless it is also a leaf)

• A non-leaf node contains k-1 keys

• Databases do not use B-trees 
but B+ trees; even if they say 
they use B-trees!!
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https://en.wikipedia.org/wiki/B-tree#/media/File:B-tree.svg



B+ tree

• B+ tree
• Is a B-tree

• But the data is at the leaves only

• Leaf nodes organized as linked list

• B+ trees are balanced

• Inner nodes correspond to blocks

• Leaf nodes correspond to blocks

• Blocks organized like slotted 
pages for variable length data
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From Oracle documentation (11g)



B+ tree details

• The keys in the inner nodes might not correspond to actual data
• Used as separators

• Typically, the leaf nodes contain pointers to the tuples: <value,key> 
where “value” is the value that is being indexed and “key” is the 
pointer to the tuple, typically as a row id or tuple id (recall: this is at 
least a block id and an offset)

• Some systems allow to store the data directly on the leaves (default is 
as above)

• Some systems create a B+ tree index by default for all tables, indexing 
the key. If there is no key, the engine assigns random keys and indexes 
them
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Clustered indexes

• An index orders the table by the attribute it is indexing
• But the tuples in the table might not be ordered

• A clustered index forces the tuples to be stored in the same order as 
the index indicates => table is physically stored in a sorted manner
• Typically done only for the primary key 

• Automatic in systems that stored the data in the leaf nodes

• Most useful for tables that are not updated frequently
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What to index?

• A B+ tree can use one or more attributes as the key to the index
• If one attribute, those are the values

• If several, it builds a composite key

• Useful when we are looking for combinations of values on certain 
attributes or a table is searched by several attributes

• Compared lexicographically
(a1,b1) < (a2,b2) <=> (a1 < b1) V ( a1 = b1 ˄ a2 < b2 )

• Some values can be left unspecified but typically only the ones at the 
beginning of the key
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Composite index

• Assume a composite index on  
department_id, last_name, salary

• Data is sorted by the three 
attributes (in that order)

• Full index scan:
• Read the data from the leaves in 

sorted order

• Filter on salary 

• Avoids having to scan the entire 
table and result is already sorted
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SELECT department_id, last_name, salary 
FROM   employees
WHERE  salary > 5000 
ORDER BY department_id, last_name;



Non-unique values

• A B+ tree index can be built on any attribute, including those that are 
not unique (e.g., the department in the table of students of ETH)

• This is a problem with the basic design as we cannot find all the 
duplicates
• Option 1 = repeat the key at the leaf nodes for every duplicated entry

• Option 2 = store the key once but point to a linked list of all the matching 
entries

• If the data is stored in the leaves, append the tuple ID to know what 
tuple the entry refers too (otherwise, they are all the same)
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B+ tree direct lookup

• Traverse the tree from 
the root

• Within each node, use 
binary search to look for 
the correct entry

• At a leaf node:
• Return the corresponding 

pointer

• Return the position
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Scans: Range lookup
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SELECT *
FROM T
WHERE T.x > 11 AND t.x < 222

Find first tuple that matches

Traverse leaves until last match found 



Inserting into the index

• Lookup the corresponding leaf
• If there is space, insert

• If there is no space in the leaf
• Split leaf into two new leaves
• Insert new item on corresponding 

leaf
• Insert new separator on parent node

• If parent node is full
• Split node in two
• Insert separator in parent node
• All the way to the root if needed
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Deleting from the index

• Look up the corresponding leaf

• Remove the entry from the 
leaf

• If the leaf is less than half full
• Check a neighboring leaf

• if more than half full, balance 
both leaves

• If half full, merge both leaves

• Update separator
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Concurrent access I

• Indexes are heavily used while they are being maintained, these 
creates conflicting, concurrent accesses

• Lock coupling
• Lock a page and its parent:

• Look the root, lock the first level

• Release the lock on the root, lock the second level

• …

• Prevents problems when a page must be split

• Not enough if we have to go further up
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Concurrent access II

• Make sure the bad case never happens:
• Use lock coupling

• On every node, check if there is space for one more entry

• If not, then split the node (we can, because we checked the parent)

• This approach ensures that a split of a page never causes the changes 
to propagate all the way back to the root

• An alternative approach
• Try lock coupling

• If we have to split beyond the parent, abort operation and release everything

• Start again but now locking the entire path from the root
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Bulk inserts

• To create a B+ tree index, proceed as follows:
• Tree will be created bottom up (from the leaves up) 

• Sort the data

• Use the sorted data to fill blocks one after each other

• Remember the largest value in each block

• Create the inner nodes by using the largest value in each block as separator

• Iterate upwards to next level until there is only one block (the root)

• If blocks are filled completely, the results is a clustered and compact 
tree

• If data is to be updated, better leave space in each block 
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Optimizations

• Reverse index

• If the attribute being indexed is a sequence and new items are 
constantly being produced, inserting into a B+ tree is a problem:
• Values next to each other go to the same block
• Concurrent updates fight to insert on the same block
• Depending on how updates are handled and if the data is in the index, many 

copies of the block are produced

• The reverse index is an useful tricK:
• Take the key (e.g., 1234) and reverse it before inserting (1234 becomes 4321)
• That way sequential values (1234 and 1235) go to different pages (inserted 

4321 and 5321)
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Optimizations

• A B+ tree contains many keys in the inner nodes. Depending on the 
type of the attribute, this can become expensive

• Several optimizations possible:
• Replace separators that correspond to actual keys with shorter separators 

that have the same effect
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Optimizations

• Factor common prefix

• This makes a lot of sense since entries that are next to each other are 
likely to be very similar (same as Frame of Reference compression)

• Mostly on inner nodes to keep scans cheap
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Optimizations

• Ignore the rules of the B+ tree
• Do not merge nodes when they do not have enough data (it takes times)

• Delaying a merge could minimize changes (an insert may arrive later)

• Instead, periodically rebuild the tree

• Variable length keys (a bit of a problem)
• Number of entries is no longer between k/2 and k

• Use smaller values as separators, place long values in leaves
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Optimizations

• Similar to blocks:
• Make sure there is always space so that insertions can be done quickly

• Do not fill blocks to the max

• Depth vs breadth:
• If the nodes is very large, it contains a lot of data and the tree is shallower => 

good for slow storage devices

• If the node is small, there are many nodes, tree must be deeper => good in 
fast storage

• Slow disks => larger nodes (potentially over several blocks but sequential)

• Fast memory => smaller nodes (several nodes in a block)
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Relation to segments and blocks

• Segments are used to refer to database entities like tables and 
indexes

• An index is stored in its own segment and can use blocks of different 
size than the data blocks

• An index can have its own memory buffer to avoid that working on 
the index affects working on the data

• Indexes are treated as first class citizens, like tables

• Often, queries can be answered by looking at the index rather than at 
the data
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Other indexing techniques
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Query selectivity

• Query selectivity is important when considering using an index
• Selectivity: how many tuples are returned (highly selective => few tuples in 

the results; low selectivity => many tuples in the results)

• Index discussed so far work best for queries with high selectivity

• Alternative to use an index is a table scan (read the entire table)
• Could be faster if table is small

• It is faster if query has low enough selectivity:
• Many tuples are selected

• Each tuple has to traverse index and follow indirection (if data not in index)

• Selection predicates can be complex, with many constraints
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Bitmaps

• For every possible value that an attribute can take, represent that 
value with an array where position i is set to 1 if tuple i contains that 
value:
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Name Country

Juan Spain

Mary UK

Ueli Switzerland

1 00 …Spain

0 01 …UK

0 10 …Spain



Bitmaps

• Simple predicate selections very efficient using bitmap

• Can be used to perform operations directly on the bitmaps
• T.a = 3 ˄ T.b =5 0 > just intersect the corresponding bitmap for every column

• Usually sparse 0> compress very well (run length encoding)

• Often used for large tables in analytics as it is faster than other 
indexes for low selectivity queries
• Especially useful for data types where comparison is expensive
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Materialized aggregates

• For groups of data that does not change very often, one can compute 
and store some basic statistics:
• Sum, Avg, count, min, max …

• The aggregates can be used as a small index to check whether the 
data needed is within that group

• The aggregates can be used to compute aggregates over the whole 
table without having to read all the data, only the aggregates
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Specialized indexes

• Text:
• Tries

• Patricia Trees

• Inverted indexes (mapping of words to documents)

• Spatial:
• R trees

• Grid file

• …
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