
Armv8-A Instruction Set Architecture

Non-Confidential

Issue 1.1
Copyright © 2019-2020 Arm Limited (or its
affiliates). All rights reserved.

ARM062-948681440-3280

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 2 of 38

Armv8-A Instruction Set Architecture

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights

reserved. Release information

Document history

Issue Date Confidentiality Change

1.0 26 June 2019 Non-Confidential First release

1.1 03 July 2020 Non-Confidential Fixes to examples in “Conditional select
instructions” and “Procedure Call
Standard” sections.

Non-Confidential Proprietary Notice
This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent applications.
No part of this document may be reproduced in any form by any means without the express prior written
permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is
granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any third
party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation
with respect to, and has undertaken no analysis to identify or understand the scope and content of, patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication
or disclosure of this document complies fully with any relevant export laws and regulations to assure that this
document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the
word “partner” in reference to Arm’s customers is not intended to create or refer to any partnership relationship
with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed
written agreement covering this document with Arm, then the click through or signed written agreement prevails
over and supersedes the conflicting provisions of these terms. This document may be translated into other
languages for convenience, and you agree that if there is any conflict between the English version of this
document and any translation, the terms of the English version of the Agreement shall prevail.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 3 of 38

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at
33Thttp://www.arm.com/company/policies/trademarks33T.

http://www.arm.com/company/policies/trademarks

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 4 of 38

Copyright © 2017 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status
This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered
this document to.

Unrestricted Access is an Arm internal classification.

Product Status
The information in this document is Final, that is for a developed product.

Web Address
www.arm.com

http://www.arm.com/

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 5 of 38

Contents

1 Overview .. 6

2 Why you should care about the ISA ... 7

3 Instruction sets in the Armv8-A .. 8

4 Instruction set resources ... 9

5 Simple sequential execution ... 10

6 Registers in AArch64 ... 11

6.1 General-purpose registers .. 11

6.2 Other registers ... 12

6.3 System registers .. 13

7 Data processing ... 14

7.1 Arithmetic and logic operations .. 14

7.2 Floating point .. 15

7.2.1 Is floating point support optional? .. 15

7.3 Bit manipulation... 16

7.4 Extension and saturation ... 17

7.4.1 Sub-register-sized integer data processing ... 18

7.5 Format conversion .. 19

7.6 Vector data .. 20

8 Loads and stores .. 21

8.1 Size .. 21

8.2 Zero and sign extension .. 22

8.3 Addressing ... 23

8.4 Load pair and store pair .. 25

8.5 Using floating point registers ... 25

9 Program flow .. 26

9.1 Loops and decisions .. 26

9.1.2 Unconditional branch instructions ... 26

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 6 of 38

9.1.3 Conditional branch instructions .. 26

9.2 Generating condition code .. 28

9.3 Conditional select instructions .. 30

10 Function calls ... 32

11 Procedure Call Standard .. 33

12 System calls .. 35

13 Check your knowledge ... 36

14 Related information .. 37

14.1 Instruction set resources ... 37

14.2 Procedure Call Standard ... 37

14.3 Useful links to training .. 37

15 Next steps ... 38

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 7 of 38

1 Overview

Overview

An Instruction Set Architecture (ISA) is part of the abstract model of a computer. It defines how
software controls the processor.

The Arm ISA allows you to write software and firmware that conforms to the Arm
specifications. This mean that, if your software or firmware conforms to the specifications, any
Arm-based processor will execute it in the same way.

This guide introduces the A64 instruction set, used in the 64-bit Armv8-A architecture, also
known as AArch64.

We will not cover every single instruction in this guide. All instructions are detailed in the Arm
Architecture Reference Manual (Arm ARM). Instead, we will introduce the format of the
instructions, the different types of instruction, and how code written in assembler can interact
with compiler-generated code.

At the end of this guide, you can check your knowledge. You will have learned about the main
classes of instructions, the syntax of data-processing instructions, and how the use of W and X
registers affects instructions. The key outcome that we hope you will learn from this guide is to
be able to explain how generated assembler code maps to C statements, when given a C
program and the compiler output for it. Finally, this guide will show you how to write a function
in assembler that can be called from C.

https://developer.arm.com/architectures/learn-the-architecture/armv8-a-instruction-set-architecture/check-your-knowledge

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

2 Why you should care about the ISA

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 7 of 38

2 Why you should care about the
ISA
As developers, you may not need to write directly in assembler in our day-to-day role. However,
assembler is still important in some areas, such as the first stage boot software or some low-
level kernel activities.

Even if you are not writing assembly code directly, understanding what the instruction set can
do, and how the compiler makes use of those instructions, can help you to write more efficient
code. It can also help you to understand the output of the compiler. This can be useful when
debugging.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

3 Instruction sets in the Armv8-A

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 8 of 38

3 Instruction sets in the Armv8-A
Armv8-A supports three instruction sets: A32, T32 and A64.

The A64 instruction set is used when executing in the AArch64 Execution state. It is a fixed-
length 32-bit instruction set. The ‘64’ in the name refers to the use of this instruction by the
AArch64 Execution state. It does not refer to the size of the instructions in memory.

The A32 and T32 instruction sets are also referred to as ‘ARM’ and ‘Thumb', respectively.
These instruction sets are used when executing in the AArch32 Execution state. In this guide,
we do not cover the A32 and T32 instruction sets. To find out more about these instruction
sets, see the Related Information section of this guide.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

4 Instruction set resources

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 9 of 38

4 Instruction set resources
Each version of the Arm architecture has its own Arm Architecture Reference Manual (Arm
ARM), which can be found on the Arm Developer website. Every Arm ARM provides a detailed
description of each instruction, including:

• Encoding - the representation of the instruction in memory.

• Arguments - inputs to the instruction.

• Pseudocode - what the instruction does, as expressed in Arm pseudocode language.

• Restrictions - when the instruction cannot be used, or the exceptions it can trigger.

The instruction descriptions for A64 are also available in XML and HTML. The XML and HTML
formats are useful if you need to refer to the instructions often. The XML and HTML formats
can be found on the Arm Developer website. You can find a link in the Related information
section of this guide. The XML can be downloaded as a compressed archive and the HTML can
be viewed and searched using a web browser.

Note: The information in the XML/HTML and the Arm ARM are taken from the same
source but may be formatted slightly differently.

https://developer.arm.com/

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

5 Simple sequential execution

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 10 of 38

5 Simple sequential execution
The Arm architecture describes instructions following a Simple Sequential Execution (SSE)
model. This means that the processor behaves as if the processor fetched, decoded and
executed one instruction at a time, and in the order in which the instructions appeared in
memory.

In practice, modern processors have pipelines that can execute multiple instructions at once,
and may do so out of order. This diagram shows an example pipeline for an Arm Cortex
processor:

You will remember that the architecture is a functional description. This means that it does not
specify how an individual processor works. Each processor must behave consistently with the
simple sequential execution model, even if it is re-ordering instructions internally.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

6 Registers in AArch64

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 11 of 38

6 Registers in AArch64

6.1 General-purpose registers
Most A64 instructions operate on registers. The architecture provides 31 general purpose
registers. Each register can be used as a 64-bit X register (X0..X30), or as a 32-bit W register
(W0..W30). These are two separate ways of looking at the same register. For example, this
register diagram shows that W0 is the bottom 32 bits of X0, and W1 is the bottom 32 bits of X1:

For data processing instructions, the choice of X or W determines the size of the operation.
Using X registers will result in 64-bit calculations, and using W registers will result in 32-bit
calculations. This example performs a 32-bit integer addition:

ADD W0, W1, W2

This example performs a 64-bit integer addition:

ADD X0, X1, X2

When a W register is written, as seen in the example above, the top 32 bits of the 64-bit register
are zeroed.

There is a separate set of 32 registers used for floating point and vector operations. These
registers are 128-bit, but like the general-purpose registers, can be accessed in several ways.
Bx is 8 bits, Hx is 16 bits and so on to Qx which is 128 bits.

The name you use for the register determines the size of the calculation. This example performs
a 32-bit floating point addition:

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

6 Registers in AArch64

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 12 of 38

FADD S0, S1, S2

This example performs a 64-bit floating point addition:

FADD D0, D1, D2

These registers can also be referred to as V registers. When the V form is used, the register is
treated as being a vector. This means that it is treated as though it contains multiple
independent values, instead of a single value. This example performs vector floating point
addition:

FADD V0.2D, V1.2D, V2.2D

This example performs vector integer addition:

ADD V0.2D, V1.2D, V2.2D

We will look at vector instructions in more detail later in this guide.

6.2 Other registers
Here are some other registers in the A64 that you should know about:

The zero registers, ZXR and WZR, always read as 0 and ignore writes.

You can use the stack pointer (SP) as the base address for loads and stores. You can also use
the stack pointer with a limited set of data-processing instructions, but it is not a regular
general purpose register.

Armv8-A has multiple stack pointers, and each one is associated with a specific Exception level.
When SP is used in an instruction, it means the current stack pointer. The guide to the
exception model explains how the stack pointer is selected.

X30 is used as the Link Register and can be referred to as LR.

Note: Separate registers, ELR_ELx, are used for returning from exceptions. This is
discussed in more detail in the guide to the exception model.

The Program Counter (PC) is not a general-purpose register in A64, and it cannot be used with
data processing instructions. The PC can be read using:

ADR Xd, .

The ADR instruction returns the address of a label, calculated based on the current location.
Dot (‘.’) means 'here', so the shown instruction is returning the address of itself. This is
equivalent to reading the PC. Some branch instructions, and some load/store operations,
implicitly use the value of the PC.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

6 Registers in AArch64

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 13 of 38

Note: In the A32 and T32 instruction sets, the PC and SP are general purpose registers.
This is not the case in A64 instruction set.

6.3 System registers
As well as general purpose registers, the architecture defines system registers. System
registers are used to configure the processor and to control systems such as the MMU and
exception handling.

System registers cannot be used directly by data processing or load/store instructions. Instead,
the contents of a system register need to be read into an X register, operated on, and then
written back to the system register. There are two specialist instructions for accessing system
registers:

MRS Xd, <system register>

reads the system register into Xd.

MSR <system register>, Xn

write Xn to the system register.

System registers are specified by name, for example SCTLR_EL1:

MRS X0, SCTLR_EL1

reads SCTLR_EL1 into X0.

System register names end with _ELx. The _ELx specifies the minimum privilege necessary to
access the register. For example:

SCTLR_EL1

requires EL1 or higher privilege.

SCTLR_EL2

requires EL2 or higher privilege.

SCTLR_EL3

requires EL3 privilege

Attempting to access the register with insufficient privilege results in an exception.

Note: Sometimes you will see _EL12 or _EL01. These are used as part of virtualization.
Refer to the guide on virtualization for more information.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

7 Data processing

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 14 of 38

7 Data processing

7.1 Arithmetic and logic operations
The basic format of logical and integer arithmetic instructions is:

The parts of the instruction are as follows:

• Operation. This defines what the instruction does. For example, ADD does addition and AND

performs a logical AND.

An S can be added to the operation to set flags. For example, ADD becomes ADDS. This s
tells the processor to update the ALU flags based on the result of instruction. We discuss
ALU flags in the section on generating condition code.

• Destination: The destination of the instruction is always a register, and specifies where the
result of the operation is placed. Most instructions have a single destination register. A few
instructions have two destination registers. When the destination is a W register, the upper
32 bits of the corresponding X register are set to 0.

• Operand 1: This will always be a register. This is the first input to the instruction.

• Operand 2: This will be a register or a constant, and is the second input to the instruction.

When operand 2 is a register, it may include an optional shift.

When operand 2 is a constant, it is encoded within the instruction itself. This means that the
range of constants available is limited.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

7 Data processing

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 15 of 38

You should be aware of a couple of special cases, such as the MOV and MVN instructions. MOV
moves a constant, or the contents of another register, into the register specified as the
destination. MOV and MVN only require a single input operand, which can be either a register or a
constant, as shown here:

MOV X0, #1

sets: X0 = 1

MVN W0, W1

sets: W0 = ~W1

7.2 Floating point
Floating-point operations follow the same format as integer data-processing instructions and
use floating-point registers. Like with the integer data-processing instructions, the size of the
operation determines the size of the register that is used. The operation part of a floating-point
instruction always starts with an F. For example, this instruction sets H0 = H1 / H2 with half
precision:

FDIV H0, H1, H2

This instruction sets S0 = S1 + S2 with single precision:

FADD S0, S1, S2

This instruction sets D0 = D1 - D2 with double precision:

FSUB D0, D1, D2

Support for half precision (16 bit) was added in Armv8.2-A and is optional. Support for half-
precision is reported by ID_AA64PFR0_EL1.

Access to floating point registers can be trapped. This means that any attempt to use floating
point registers will generate an exception. Trapping is discussed in more detail the exception
model guide.

7.2.1 Is floating point support optional?

No. Support for floating point is mandatory in Armv8-A. The architecture specifies that it is
required whenever a rich operating system, such as Linux, is used.

You are technically permitted to omit floating point support, if you are running an entirely
proprietary software stack. Most toolchains, including GCC and Arm Compiler 6, will assume
floating point support.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

7 Data processing

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 16 of 38

7.3 Bit manipulation
There are a set of instructions for manipulating bits within a register. This figure shows some
examples:

The BFI instruction inserts a bit field into a register. In the preceding figure, BFI is taking a 6-
bit field from the source register (W0) and inserting it at bit position 9 in the destination
register.

UBFX extracts a bit field. In the preceding figure, UBFX is taking a 7-bit field from bit position 18
in the source register, and placing it in the destination register.

Test yourself: In the preceding figure, what the last example mean? Remember, WZR is the zero-
register.

The last example in the preceding figure takes the bottom 4 bits of WZR, and inserts them at bit
position 3 of W1. Using WZR means that this is effectively a bit clear operation.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

7 Data processing

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 17 of 38

Other instructions can reverse byte or bit order, as you can see in this figure:

REV16 and RBIT are particularly useful when you are handling data that is in a different
endianness.

Test yourself: The REV16 instruction reverses the two halfwords (16 bits) within a W register. In
the preceding figure, there is an instruction to reverse the bytes in an entire register, and an
instruction for byte reversing the words within an X register. What are these two instructions
called?

Download the instruction set XML to see if you are correct.

7.4 Extension and saturation
Sometimes it is necessary to convert data from one size to another. The SXTx (sign extend) and
UXTx (unsign extend) instructions are available for this conversion. In this conversion, the x
determines the size of the data being extended, as shown in this figure:

https://developer.arm.com/architectures/instruction-sets

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

7 Data processing

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 18 of 38

In the first instruction, SXTB, the B means byte. It takes the bottom byte of W0 and sign extends
it to 32 bits.

UXTH is an unsigned extension of a halfword (H). It takes the bottom 16 bits of W1 and zero
extends it to 32 bits.

The first two examples have W registers as a destination, meaning the extension is to 32 bits.
The third example has an X register, meaning the sign extension is to 64 bits.

Test yourself: Write an instruction to sign extend a byte in W5 to 64 bits, placing the result in X7.

SXTB X7, W5

7.4.1 Sub-register-sized integer data processing

Some instructions perform saturating arithmetic. This means that if the result is larger or
smaller than the destination can hold, then the result is set to the largest or smallest value of
the destination's integer range.

The data-processing instructions can efficiently handle 32-bit data and 64-bit data. In practice,
you often see saturation instructions when handling sub-register calculations. Sub-register
calculations are calculations of 16 bits or 8 bits. This table shows some examples of sub-register
calculations in C and the generated assembler code:

C Generated assembler

uint32_t add32(uint32_t a, uint32_t b)
{
return a+b;
}

add32:
ADD W0,W1,W0
RET

uint16_t uadd16(uint16_t a, uint16_t b)

{

return a+b;

}

uadd16:
AND W8,W1,#0xffff
ADD W0,W8,W0,UXTH
RET

int16_t sadd16(int16_t a, int16_t b)
{
return a+b;
}

sadd16:
SXTH W8,W1
ADD W0,W8,W0,SXTH
RET

In the first example in the table, the 32-bit addition maps onto W registers and therefore can be
handled easily.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

7 Data processing

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 19 of 38

FMOV D0, X0

SCVTF D1, X0

For the 16-bit examples in the table, an extra instruction is necessary. The third example in the
table takes the 16-bit inputs, extends them to 32 bits, and then performs the addition. The
sequence converts the 16-bit input to 32 bits, using:

SXTH W8,W1

Then, this instruction performs the addition and saturates the result to signed 16 bits:

ADD W0,W8,W0,SXTH

Adding , SXTH to the end of the operand list of the ADD operation causes the result to use
saturating arithmetic. Because the destination is a W register, the ADD will saturate to a 16-bit
integer range.

7.5 Format conversion
We have seen that the MOV and MVN instructions copy the value from one register to another.
Similarly, FMOV can be used to copy between floating-point and general purpose registers.

However, using FMOV copies the literal bit pattern between the registers. There are also
instructions that can convert to the closest representation, as this figure shows:

In this example, imagine that X0 contains the value 2 (positive integer 2):

X0 = 0x0000_0000_0000_0002

Then, the following sequence is executed:

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

7 Data processing

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 20 of 38

D0 = 0x0000_0000_0000_0002 = 9.88131e-324

D1 = 0x4000_0000_0000_0002 = 2.0

Both instructions “copy” X0 into a D register. However, the results are quite different:

The FMOV copied the literal bit pattern, which is a very different value when interpreted as a
floating-point value. The SCVTF converted the value in X0 to the closest equivalent in floating-
point.

Similarly, FCTxx can be used to convert a floating-point value to its closest integer
representation. In this instance, different values of 'xx' control the rounding mode used.

7.6 Vector data
The A64 architecture also provides support for vector data processing. The two types of vector
processing available are:

• Advanced SIMD, which is also known as Neon.

• Scalable Vector Extension, which is abbreviated to SVE.

We will cover both types of vector processing in a later guide on vector programming.

Note: The name Advanced SIMD derives from the existence of SIMD instructions that
operated on regular 32-bit general-purpose registers in Armv6. In Armv7, the term
Advanced SIMD was used for instructions that could operate on 128-bit vectors. The
Armv6 style instructions do not exist in A64, but the naming convention remains.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

8 Loads and stores

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 21 of 38

STR<Size> <Destination>, [<address>]

<Destination>, [<address>] LDR<Sign><Size>

LDR W0, [<address>]

LDR X0, [<address>]

STRB W0, [<address>]

STRH W0, [<address>]

STRW X0, [<address>]

8 Loads and stores
The basic load and store operations are: LDR (load) and STR (store). These operations transfer
a single value between memory and the general-purpose registers. The syntax for these
instructions is:

8.1 Size
The size of the load or store is determined by the register type X or W and the <Size> field. X is
used for 32 bits and W is used for 64 bits. For example, this instruction loads 32 bits from
<address> into W0:

This instruction loads 64 bits from <address> into X0:

The <Size> field allows you to load a sub-register sized quantity of data. For example, this
instruction stores the bottom byte (B) of W0 to <address>:

This instruction stores the bottom halfword (H) of W0 to <address>:

Finally, this instruction stores the bottom word (W) of X0 to <address>:

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

8 Loads and stores

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 22 of 38

8.2 Zero and sign extension
By default, when a sub-register-sized quantity of data is loaded, the rest of the register is
zeroed, as shown in this figure:

Note: Remember that whenever a W register is written, the top half of the X register is
zeroed.

Adding an S to the operation causes the value to be sign extended instead. How far the size
extension goes depends on whether the target is a W or X register, as shown in this figure:

Task: If the byte at address 0x8000 contains the value 0x1F, what would be the result of LDRSB
X4, <0x8000> be?

LDRSB is performing a byte load with sign extension to 64 bits. The most significant bit of the loaded
value will be replicated to fill the 64-bit register. The loaded value, 0x1F, has its top bit clear.
Therefore, the value in X4 will be 0x0000_0000_0000_001F.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

8 Loads and stores

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 23 of 38

8.3 Addressing
The addresses for load and store instructions appear within the square brackets, as shown in
this example:

LDR W0, [X1]

There are several addressing modes that define how the address is formed.

• Base register - The simplest form of addressing is a single register. Base register is an X

register that contains the full, or absolute, virtual address of the data being accessed, as you
can see in this figure:

• Offset addressing modes - An offset can be applied optionally to the base address, as you

can see in this figure:

In the preceding figure, X1 contains the base address and #12 is a byte offset from that
address. This means that the accessed address is X1+12. The offset can be either a
constant or another register. This type of addressing might be used for structs, for example.
The compiler maintains a pointer to the base of struct using the offset to select different
members.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

8 Loads and stores

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 24 of 38

• Pre-index addressing modes - In the instruction syntax, pre-indexing is shown by adding an
exclamation mark ! after the square brackets, as this figure shows:

Pre-indexed addressing is like offset addressing, except that the base pointer is updated as
a result of the instruction. In the preceding figure, X1 would have the value X1+12 after the
instruction has completed.

• Post-index addressing modes - With post-index addressing, the value is loaded from the
address in the base pointer, and then the pointer is updated, as this figure shows:

Post-index addressing is useful for popping off the stack. The instruction loads the value
from the location pointed at by the stack pointer, and then moves the stack pointer on to
the next full location in the stack.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

8 Loads and stores

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 25 of 38

LDP W3, W7, [X0]

STP D0, D1, [X4]

STP X0, X1, [SP, #-16]!

LDP X0, X1, [SP], #16

LDR D1, [X0]

STR Q0, [X0, X1]

LDP Q1, Q3, [X5], #256

8.4 Load pair and store pair
So far, we have discussed the load and store of a single register. A64 also has load (LDP) and
store pair (STP) instructions.

These pair instructions transfer two registers to and from memory. The first instruction loads
[X0] into W3, and loads [X0 + 4] into W7:

This second instruction stores D0 into [X4] and stores D1 to [X4 + 8]:

Load and store pair instructions are often used for pushing, and popping off the stack. This first
instruction pushes X0 and X1 onto the stack:

This second instruction pops X0 and X1 from the stack:

Remember that in AArch64 the stack-pointer must be 128-bit aligned.

8.5 Using floating point registers
Loads and stores can also be carried out using the floating-point registers, as we will see here.
The first instruction loads 64-bits from [X0] into D1:

This second instruction stores 128-bits from Q0 to [X0 + X1]:

Finally, this instruction loads a pair of 128-bit values from X5, then increments X5 by 256:

There are some restrictions:

• The size is specified by the register type only.

• There is no option to sign extend loads.

• The address must still be an X register.

Load and stores using floating-point registers can be found in unexpected cases. It is common
for memcpy() type routines to use them. This is because the wider register means that fewer
iterations are needed. Just because your code does not use floating-point values, don't assume
that you won't need to use the floating-point registers.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

9 Program flow

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 26 of 38

9 Program flow
Ordinarily, a processor executes instructions in program order. This means that a processor
executes instructions in the same order that they are set in memory. One way to change this
order is to use branch instructions. Branch instructions change the program flow and are used
for loops, decisions and function calls.

The A64 instruction set also has some conditional branch instructions. These are instructions
that change the way they execute, based on the results of previous instructions.

Note: Armv8.3-A and Armv8.5-A introduced instructions to protect against return-
orientated programming and jump-oriented programming.

9.1 Loops and decisions
In this section, we will examine how loops and decisions let you change the flow of your
program code using branch instructions. There are two types of branch instructions:
unconditional and conditional.

9.1.2 Unconditional branch instructions

The unconditional branch instruction B <label> performs a direct, PC-relative, branch to
<label>. The offset from the current PC to the destination is encoded within the instruction.
The range is limited by the space available within the instruction to record the offset and is +/-
128MB.

When you use BR <Xn>, BR performs an indirect, or absolute, branch to the address specified
in Xn.

9.1.3 Conditional branch instructions

The conditional branch instruction B.<cond> <label> is the conditional version of the B
instruction. The branch is only taken if the condition <cond> is true. The range is limited to +/-
1MB.

The condition is tested against the ALU flags stored in PSTATE and needs to be generated by a
previous instruction such as a compare (CMP).

CBZ <Xn> <label> and CBNZ <Xn> <label>

This instruction branches to <label> if Xn contains 0 (CBZ), and branches to label if Xn does
not contain 0 (CBNZ).

TBZ <Xn>, #<imm>, <label> and TBNZ <Xn>, #<imm>, <label>

TBX works in a similar way to CBZ/CBNZ, but tests the bit specified by <imm>.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

9 Program flow

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 27 of 38

CMP X5, XZR // Compare X5 with zero

B.NE skip // If X5!=0 branch past BR

BR X1

skip:

…

Note: The direct, or PC-relative, branches store the offset to the destination within the
instruction. The conditional branches have a smaller range. This is because some bits are
needed to store the condition itself, which leaves fewer bits for the offset.

Mapping these on to what you might write in C, this table shows examples of using branches for
loops and decisions:

C Typical output from a compiler

if (a == 5)
b = 5;

CMP W0, #5
B.NE skip
MOV W8, #5

skip:
…

while (a != 0)
{
b = b + c;
a = a - 1;

}

loop:
CBZ W8, skip
ADD W9, W9, W10
SUB W8, W8, #1
B loop

skip:
…

Note: The labels shown in the output would not be created by a compiler. They are
included here to aid readability.

Test yourself: There is no conditional indirect branch instruction in A64. How could you construct
an instruction sequence that performs an absolute branch to the address in X1, if X5 contains 0?

There is no single correct answer, but something like this would be acceptable:

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

9 Program flow

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 28 of 38

9.2 Generating condition code
In Program flow - loops and decisions, we learned that the <cond> is tested against the ALU
flags stored in PSTATE.

The ALU flags are set as a side effect of data-processing instructions. To recap, an S at the end
operation causes the ALU flags to be updated. This is an example of an instruction in which the
ALU flags are not updated:

ADD X0, X1, X2

This is an example of an instruction in which the ALU flags are updated with the use of S:

ADDS X0, X1, X2

This method allows software to control when the flags are updated or not updated. The flags
can be used by subsequent condition instructions. Let's take the following code as an example:

SUBS X0, X5, #1

AND X1, X7, X9

B.EQ label

The SUBS instruction performs a subtract and updates the ALU flags. Then the AND
instruction performs an and operation, and does not update the ALU flags. Finally, the B.EQ
instruction performs a conditional branch, using flags set as result of the subtract.

The flags are:

• N - Negative

• C - Carry

• V - Overflow

• Z - Zero

Let’s take the Z flag as an example. If the result of the operation was zero, then the Z flag is set
to 1. For example, here the Z flag will be set if X5 is 1, otherwise it will be cleared:

SUBS X0, X5, #1

The condition codes map on to these flags and come in pairs. Let's take EQ (equal) and NE (not
equal) as an example, and see how they map to the Z flag:

The EQ code checks for Z==1. The NE code checks for Z==0.

https://developer.arm.com/architectures/learn-the-architecture/armv8-a-instruction-set-architecture/program-flow-loops-and-decisions

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

9 Program flow

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 29 of 38

SUBS W0, W7, W9

B.EQ label

//an alias of SUBS XZR, X0, X7

//an alias of ANDS WZR, W5, #1

CMP X0, X7

TST W5, #1

Taking the following code as an example:

W0 = W7 - W9, Z

In the first line, we have a subtract operation. In the second line, the flag is set if the result is
zero. In the final line, there is a branch to label if Z==1.

If w7==w9, the result of the subtraction will be zero, and the Z flag would have been set.
Therefore, the branch to label will be taken if w7 and w9 are equal.

In addition to the regular data-processing instructions, other instructions are available that only
update the ALU flags:

CMP - Compare

TST - Test

These instructions are aliases of other instructions. For example:

By using the Zero register as a destination, we are discarding the result of the operation and
only updating the ALU flags.

Test yourself: The examples we seen so far have used the EQ and NE conditions. Write a sequence
that will set X0 to 5 if the result of (X5 - X6) is negative. To do this, you will need to look up the
full list of condition codes in the Arm ARM.

There are several sequences you could write. Here is one example:

SUBS XZR, X5, X6

B.PL 1a //Branch is positive or zero

MOV X0, #5 //Only executed if result was negative

1:

…

A conditional select instruction might be a better choice here.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

9 Program flow

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 30 of 38

if cond then

Xd = Xn

else

Xd = Xm

CMP W1, #0

CSEL W5, W6, W7, EQ

if (W1==0) then

W5 = W6

else

W5 = W7

if cond then

Xd = Xn

else

Xd = Xm + 1

if cond then

X0 = X0

else

X0 = X0 + 1

9.3 Conditional select instructions
So far, we have seen examples that use branches to handle decisions. The A64 instruction set
also provides conditional select instructions. In many cases, these instructions can be used as an
alternative to branches.

There are many variants, but the basic form is:

CSEL Xd, Xn, Xm, cond

This means that:

You can see an example in this code:

Which gives the same result as:

There are variants that combine another operation with the conditional select. For example,
CSINC performs a select and addition:

CSINC Xd, Xn, Xm, cond

This means that:

To just conditionally increment, you could write:

 CSINC X0, X0, X0, cond

Which equates to:

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

9 Program flow

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 31 of 38

The architecture provides an alias, CINC, for this command. Note however that CINC inverts the
logic of CSINC:

• CSINC X0, X0, X0, cond

o leaves X0 unchanged if cond is true

o increments X0 if cond is false.

• CINC X0, X0, cond

o increments X0 if cond is true

o leaves X0 unchanged if cond is false

Compilers choose the most efficient method to implement the functionality in your program.
Compilers will often use a conditional select for small if ... else statements performing simple
operations, because conditional selects can be more efficient than branches.

Here are some simple if ... else examples that compare implementations using branches to
equivalent implementations using conditional select instructions:

C Branching Conditional select

if (a != 0)

b = b + 1;

CMP W0, #0

B.EQ else

ADD W1, W1, #1

else:

…

CMP W0, #0

CINC W1, W1, NE

if (a == 0)

y = y + 1;

else

y = y - 1;

CMP W0, #0

B.NE else

ADD W1, W1, #1

B end

else:

SUB W1, W1, #1

end:

…

CMP W0, #0

SUB W2, W1, #1

CSINC W1, W2, W1, NE

In these types of examples, conditional selects have some advantages. The sequences are
shorter and take the same number of instructions, regardless of the outcome.

Importantly, conditional selects also remove the need to branch. In modern processors, this
kind of branch can be difficult for the branch prediction logic to predict correctly. A
mispredicted branch can have a negative effect on performance, it is better that you remove
branches where possible.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

10 Function calls

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 32 of 38

10 Function calls
When calling a function or sub-routine, we need a way to get back to the caller when finished.
Adding an L to the B or BR instructions turns them into a branch with link. This means that a
return address is written into LR (X30) as part of the branch.

Note: The names LR and X30 are interchangeable. An assembler, such as GNU GAS or
armclang, will accept both.

There is a specialist function return instruction, RET. This performs an indirect branch to the
address in the link register. Together, this means that we get:

Note: The figure shows the function foo() written in GAS syntax assembler. The keyword
.global exports the symbol and .type indicates that the exported symbol is a function.

Why do we need a special function return instruction? Functionally, BR LR would do the same
job as RET. Using RET tells the processor that this is a function return. Most modern
processors, and all Cortex-A processors, support branch prediction. Knowing

that this is a function return allows processors to more accurately predict the branch.

Branch predictors guess the direction the program flow will take across branches. The guess is
used to decide what to load into a pipeline with instructions waiting to be processed. If the
branch predictor guesses correctly, the pipeline has the correct instructions and the processor
does not have to wait for instructions to be loaded from memory.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

11 Procedure Call Standard

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 33 of 38

11 Procedure Call Standard
The Arm architecture places few restrictions on how general purpose registers are used. To
recap, integer registers and floating-point registers are general purpose registers. However, if
you want your code to interact with code that is written by someone else, or with code that is
produced by a compiler, then you need to agree rules for register usage. For the Arm
architecture, these rules are called the Procedure Call Standard, or PCS.

The PCS specifies:

• Which registers are used to pass arguments into the function.

• Which registers are used to return a value to the function doing the calling, known as the
caller.

• Which registers the function being called, which is known as the callee, can corrupt.

• Which registers the callee cannot corrupt.

Consider a function foo(), being called from main():

The PCS says that the first argument is passed in X0, the second argument in X1, and so on up
to X7. Any further arguments are passed on the stack. Our function, foo(), takes two
arguments: b and c. Therefore, b will be in W0 and c will be in W1.

Why W and not X? Because the arguments are a 32-bit type, and therefore we only need a W
register.

Note: In C++, X0 is used to pass the implicit this pointer that points to the called function.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

11 Procedure Call Standard

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 34 of 38

Next, the PCS defines which registers can be corrupted, and which registers cannot be
corrupted. If a register can be corrupted, then the called function can overwrite without
needing to restore, as this table of PCS register rules shows:

X0-X7 X8-X15 X16-X23 X24-X30

Parameter and
Result Registers
(X0-X7)

XR (X8) IP0 (X16) Callee-saved
Registers
(X24-X28)

Corruptible
Registers
(X9-X15)

IP1 (X17)

PR (X18)

Callee-saved
Registers
(X19-X23)

FP (X29)

LR (X30)

For example, the function foo() can use registers X0 to X15 without needing to preserve their
values. However, if foo() wants to use X19 to X28 it must save them to stack first, and then
restore from the stack before returning.

Some registers have special significance in the PCS:

• XR - This is an indirect result register. If foo() returned a struct, then the memory for
struct would be allocated by the caller, main() in the earlier example. XR is a pointer to the
memory allocated by the caller for returning the struct.

• IP0 and IP1 - These registers are intra-procedure-call corruptible registers. These
registers can be corrupted between the time that the function is called and the time that it
arrives at the first instruction in the function. These registers are used by linkers to insert
veneers between the caller and callee. Veneers are small pieces of code. The most common
example is for branch range extension. The branch instruction in A64 has a limited range. If
the target is beyond that range, then the linker needs to generate a veneer to extend the
range of the branch.

• FP - Frame pointer.

• LR - X30 is the link register (LR) for function calls.

Note: We previously introduced the ALU flags, which are used for conditional branches
and conditional selects. The PCS says that the ALU flags do not need to be preserved
across a function call.

There is a similar set of rules for the floating-point registers:

D0-D7 D8-D15 D16-D23 D24-D31

Parameter and
Result Registers
(D0-D7)

Callee-saved
Registers
(D8-D15)

Callee-saved Registers
(D16-D31)

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

12 System calls

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 35 of 38

12 System calls
Sometimes it is necessary for software to request a function from a more privileged entity. This
might happen when, for example, an application requests that the OS opens a file.

In A64, there are special instructions for making such system calls. These instructions cause an
exception, which allows controlled entry into a more privileged Exception level.

• SVC - Supervisor call

Causes an exception targeting EL1.

Used by an application to call the OS.

• HVC - Hypervisor call

Causes an exception targeting EL2.

Used by an OS to call the hypervisor, not available at EL0.

• SMC - Secure monitor call

Causes an exception targeting EL3.

Used by an OS or hypervisor to call the EL3 firmware, not available at EL0.

If an exception is executed from an Exception level higher than the target exception level, then
the exception is taken to the current Exception level. This means that an SVC at EL2 would
cause exception entry to EL2. Similarly, an HVC at EL3 causes exception entry to EL3. This is
consistent with the rule that an exception can never cause the processor to lose privilege.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

13 Check your knowledge

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 36 of 38

13 Check your knowledge

According to the PCS, for the function uint32_t foo(uint64_t a, uint64_t b),
which registers will used to pass in a and b, and to return the result?

a will be passed in X0 and b will be passed in X1. The result will be returned in W0.

What instruction does a 64-bit floating-point addition of D0 and D1, then places the result
in D5?

FADD D5, D0, D1

What does this instruction do? LDRSH W0, [X1, #8]

It loads 16-bits from the address X1+8 and sign extends the result to 32 bits, placing the result in W0.

What instruction is most commonly used for a function return?

RET

Which register is used to store the return address when calling a function?

X30, which can also be referred as LR.

What does executing an SVC instruction in an application do?

It would cause an exception, leading to entry into the OS.

After executing SUB W5, W8, W4, what is in the upper 32 bits of X5?

0s (zeroes). Whenever a W register is written, the upper 32 bits of the mapped X register are zeroed.

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

14 Related information

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 37 of 38

14 Related information
Here are some resources related to material in this guide:

• Vectors: Neon guide (coming soon).

• Vectors: SVE guide (coming soon).

• Building an embedded image guide (coming soon).

• Arm architecture and reference manuals (for information on the extensions to Armv8.3-
A and Armv8.5-A instruction sets, vector data-processing instructions, Advance SIMD and
SVE)

• Arm community (ask development questions, and find articles and blogs on specific topics
from Arm experts)

• ARM Assembly Language by William Hohl (ISBN: 978-1-4398-06104)

• Building an ELF Image for an Armv8-A Fixed Virtual Platform (blog post)

• Changing Exception Level and Security State with an Armv8-A Fixed Virtual
Platform (blog post)

• Cortex-A Programmer's Guide

• Retargeting and Enabling Exceptions with an ELF Image (blog post)

Here are some resources related to topics in this guide:

14.1 Instruction set resources
• Arm A64 instruction descriptions

14.2 Procedure Call Standard
• Procedure Call Standard (PCS) for the ARM 64-bit Architecture (AArch64)

14.3 Useful links to training:
• Introduction to Armv8-A

• Overview - ISA

• Architecture profiles

• What does architecture consist of?

https://developer.arm.com/docs
https://community.arm.com/
https://www.oreilly.com/library/view/arm-assembly-language/9781482229851/
https://community.arm.com/tools/b/blog/posts/building-an-elf-image-for-an-armv8-fixed-virtual-platform-2065554406?_ga=2.127587979.741188165.1546853606-1030419087.1544695588
https://community.arm.com/tools/b/blog/posts/changing-exception-level-and-security-state-with-an-armv8a-fixed-virtual-platform
https://community.arm.com/tools/b/blog/posts/changing-exception-level-and-security-state-with-an-armv8a-fixed-virtual-platform
https://community.arm.com/tools/b/blog/posts/changing-exception-level-and-security-state-with-an-armv8a-fixed-virtual-platform
https://developer.arm.com/docs/den0013/latest/cortex-a-series-programmers-guide-version-40
https://community.arm.com/tools/b/blog/posts/retargeting-and-enabling-exceptions-in-an-elf-image
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/docs/ihi0042/latest
https://training.developer.arm.com/topics/33842
https://training.developer.arm.com/contents/409521?_ga=2.32524348.344803112.1560766695-757858232.1554115719
https://training.developer.arm.com/contents/393692
https://training.developer.arm.com/contents/400899

Armv8-A Instruction Set Architecture ARM062-948681440-3280
Issue 1.1

15 Next steps

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.

 Page 38 of 38

15 Next steps
Using the Arm Instruction Set Architecture (ISA), you can write software or firmware that any
Arm-based processor will execute in the same way, if that software or firmware conforms to the
Arm specifications. In this guide, we introduced the A64 instruction set, which is used in Armv8-
A AArch64. We introduced the format of the instructions, the different types of instruction, and
how code written in assembler can interact with compiler-generated code. We explained the
main classes of instructions, the syntax of data-processing instructions, and how the use of W
and X registers affects instructions.

Based on the material learned in this guide, you can explain how generated assembler code
maps to C statements when given a C program and compiler output, and how to write a
function in assembler that can be called from C. You will also understand how to find detailed
descriptions for each instruction on the Arm Developer website, and concepts such as
registers, data processing, program flow, and loads and stores.

To keep learning about the Armv8-A architecture, see more in our series of guides.

To check your knowledge of A64 assembler, try the ISA lab exercises (coming soon). The lab
exercises require the Arm DS-5, Ultimate Edition. A 30-day evaluation version is available and
can be used to complete the exercises.

https://developer.arm.com/architectures/learn-the-architecture

	Armv8-A Instruction Set Architecture
	1 Overview
	2 Why you should care about the ISA
	3 Instruction sets in the Armv8-A
	4 Instruction set resources
	Note: The information in the XML/HTML and the Arm ARM are taken from the same source but may be formatted slightly differently.

	5 Simple sequential execution
	6 Registers in AArch64
	6.1 General-purpose registers
	6.2 Other registers
	Note: Separate registers, ELR_ELx, are used for returning from exceptions. This is discussed in more detail in the guide to the exception model.
	Note: In the A32 and T32 instruction sets, the PC and SP are general purpose registers. This is not the case in A64 instruction set.

	6.3 System registers
	Note: Sometimes you will see _EL12 or _EL01. These are used as part of virtualization. Refer to the guide on virtualization for more information.

	7 Data processing
	7.1 Arithmetic and logic operations
	7.2 Floating point
	7.3 Bit manipulation
	Test yourself: In the preceding figure, what the last example mean? Remember, WZR is the zero- register.
	Test yourself: The REV16 instruction reverses the two halfwords (16 bits) within a W register. In the preceding figure, there is an instruction to reverse the bytes in an entire register, and an instruction for byte reversing the words within an X reg...

	7.4 Extension and saturation
	Test yourself: Write an instruction to sign extend a byte in W5 to 64 bits, placing the result in X7.

	7.5 Format conversion
	7.6 Vector data
	Note: The name Advanced SIMD derives from the existence of SIMD instructions that operated on regular 32-bit general-purpose registers in Armv6. In Armv7, the term Advanced SIMD was used for instructions that could operate on 128-bit vectors. The Armv...

	8 Loads and stores
	8.1 Size
	8.2 Zero and sign extension
	Note: Remember that whenever a W register is written, the top half of the X register is zeroed.
	Task: If the byte at address 0x8000 contains the value 0x1F, what would be the result of LDRSB X4, <0x8000> be?

	8.3 Addressing
	8.4 Load pair and store pair
	8.5 Using floating point registers

	9 Program flow
	Note: Armv8.3-A and Armv8.5-A introduced instructions to protect against return- orientated programming and jump-oriented programming.
	9.1 Loops and decisions
	Note: The direct, or PC-relative, branches store the offset to the destination within the instruction. The conditional branches have a smaller range. This is because some bits are needed to store the condition itself, which leaves fewer bits for the o...
	Note: The labels shown in the output would not be created by a compiler. They are included here to aid readability.
	Test yourself: There is no conditional indirect branch instruction in A64. How could you construct an instruction sequence that performs an absolute branch to the address in X1, if X5 contains 0?

	9.2 Generating condition code
	Test yourself: The examples we seen so far have used the EQ and NE conditions. Write a sequence that will set X0 to 5 if the result of (X5 - X6) is negative. To do this, you will need to look up the full list of condition codes in the Arm ARM.

	9.3 Conditional select instructions

	10 Function calls
	11 Procedure Call Standard
	Note: In C++, X0 is used to pass the implicit this pointer that points to the called function.
	Note: We previously introduced the ALU flags, which are used for conditional branches and conditional selects. The PCS says that the ALU flags do not need to be preserved across a function call.

	12 System calls
	13 Check your knowledge
	According to the PCS, for the function uint32_t foo(uint64_t a, uint64_t b), which registers will used to pass in a and b, and to return the result?
	What instruction does a 64-bit floating-point addition of D0 and D1, then places the result in D5?
	What does this instruction do? LDRSH W0, [X1, #8]
	What instruction is most commonly used for a function return?
	Which register is used to store the return address when calling a function?
	What does executing an SVC instruction in an application do?
	After executing SUB W5, W8, W4, what is in the upper 32 bits of X5?

	14 Related information
	 ARM Assembly Language by William Hohl (ISBN: 978-1-4398-06104)
	 Building an ELF Image for an Armv8-A Fixed Virtual Platform (blog post)
	 Changing Exception Level and Security State with an Armv8-A Fixed Virtual Platform (blog post)
	 Cortex-A Programmer's Guide
	 Retargeting and Enabling Exceptions with an ELF Image (blog post)
	14.1 Instruction set resources
	 Arm A64 instruction descriptions

	14.2 Procedure Call Standard
	 Procedure Call Standard (PCS) for the ARM 64-bit Architecture (AArch64)

	14.3 Useful links to training:
	 Introduction to Armv8-A
	 Overview - ISA
	 Architecture profiles
	 What does architecture consist of?

	15 Next steps

