7R perplexity

give me best way to function prologue err handler
in rust

To implement an effective function prologue error handler in Rust, you can follow these best
practices that leverage Rust's powerful error handling capabilities. Here's a structured approach:

Use of Result Type

In Rust, functions that can fail should return a Result<T, E>type. This allows you to propagate
errors up the call stack effectively.

Example Function Signature

fn my_function() -> Result<(), MyError> %
// Function implementation

ky

Error Handling Libraries

Utilize libraries like anyhow and thiserror for ergonomic error handling.

e anyhow: This library provides a simple way to handle errors without needing to define a
custom error type for every function.

e thiserror: This library helps create custom error types with ease, automating the
implementation of the std: :fmt: :Display and std: :error: :Error traits.

Example Using thiserror

use thiserror::Error;

#[derive (Exror, Debug)]

pub enum MyError %
#[exrror("An error occurred: 30%1")]
CustomError(String),
// Add other error variants as needed

ky

fn my_function() -> Result<(), MyError> %
// Some logic that might fail
Exrr (MyError: :CustomError ("Something went wrong".into()))



Contextual Error Information

When returning errors, it's beneficial to provide context. You can use the context method from
the anyhow crate or wrap errors with additional information.

Example with Context

use anyhow: :{Context, Result};

fn my_function() -> Result<()> {
let value = some_fallible_operation().context("Failed to perform operation")?;

0k(())

Propagating Errors

Use the ? operator to propagate errors easily. This operator will return early from the function if
an error occurs.

Example of Propagation

fn main() -> Result<()> %
my_function()?;

0k(())

Logging Errors

If you need to log errors, consider using a logging library like 1og. This allows you to log errors at
various levels (info, warn, error).

Example Logging

use log::ierror, info};

fn my_function() -> Result<()> {
if let Err(e) = some_fallible_operation() {
error! ("Operation failed: {%", e);
return Err(MyError::CustomError ("Operation failed".into()));
¥
Ok(())



Summary

1. Return Result<T, E>: Always use this for functions that can fail.

2. Use Libraries: Leverage anyhow for simple error handling and thiserror for custom types.
3. Provide Context: Use context methods to give more information about errors.

4. Propagate Errors: Use the ? operator for clean error propagation.

5. Log Errors: Utilize a logging framework for better visibility into failures.

By following these practices, you'll create robust and maintainable error handling in your Rust
applications.



