
Letʼs dive deeper into the query and its components to give you a comprehensive understanding

of how it works, including the PostgreSQL system catalogs involved, the logic behind each part

of the query, and how PostgreSQL processes it.

This query is designed to list user-defined data types in a PostgreSQL database. It excludes

system-defined types (those in pg_catalog and information_schema) and focuses on three

specific kinds of types:

The query organizes this information by schema and type name for clarity.

PostgreSQL stores metadata about database objects (tables, columns, types, etc.) in special

tables called system catalogs. This query uses two key catalogs:

explain deep please

Purpose of the Query

���Base types (b): These are fundamental data types, like integer, text, or custom base types

created by the user.

���Composite types (c): These are user-defined types that group multiple fields (like a table

structure).

���Enumerated types (e): These are user-defined types that allow a fixed set of possible

values (like enums in programming languages).

Step-by-Step Explanation

1. System Catalogs and Their Role

a) pg_type

This catalog stores information about all data types in PostgreSQL.

Each row represents a type, with details like:

oid: The unique identifier for the type.

typname: The name of the type (e.g., integer, my_enum).

typtype: The kind of type:

'b': Base type (e.g., integer, text).

'c': Composite type (user-defined structured type).

The query joins these two catalogs to associate each type with its schema.

SELECT
 n.nspname AS "Schema",
 t.typname AS "Type Name",
 pg_catalog.format_type(t.oid, NULL) AS "Type"

'e': Enumerated type (user-defined enum).

'd': Domain type (a constraint-based type).

'p': Pseudo-type (special-purpose types like record or any).

typnamespace: A reference to the schema where the type is defined (points to the OID of

pg_namespace).

b) pg_namespace

This catalog stores information about schemas in the database.

Each row represents a schema, with details like:

oid: The unique identifier for the schema.

nspname: The name of the schema (e.g., public, pg_catalog).

2. SELECT Clause

a) n.nspname AS "Schema"

Retrieves the name of the schema (nspname) from the pg_namespace table.

Renames it as "Schema" for readability.

b) t.typname AS "Type Name"

Retrieves the name of the type (typname) from the pg_type table.

Renames it as "Type Name" for clarity.

c) pg_catalog.format_type(t.oid, NULL) AS "Type"

The function format_type() converts a type's OID into a human-readable format.

Example:

For a base type like an integer, it returns "integer".

For an array type or composite type, it formats it accordingly.

The second argument (NULL) means no additional modifiers are applied (e.g., precision or

scale for numeric types).

FROM pg_catalog.pg_type t
JOIN pg_catalog.pg_namespace n ON n.oid = t.typnamespace

WHERE
 n.nspname NOT IN (
 'pg_catalog',
 'information_schema'
)
 AND t.typtype IN ('b', 'c', 'e')

n.nspname NOT IN ('pg_catalog', 'information_schema')

This ensures we only retrieve user-defined schemas.

t.typtype IN ('b', 'c', 'e')

3. FROM Clause

a) pg_catalog.pg_type t

Specifies that weʼre querying from the pg_type catalog (aliased as t).

b) Join with pg_namespace

Joins the pg_namespace table (n) with the pg_type table (t) using:

ON n.oid = t.typnamespace

This means weʼre linking each type to its schema by matching their OIDs.

The column t.typnamespace in pg_type references the OID of its schema in pg_namespace.

4. WHERE Clause

a) Filter out system schemas

Excludes types that belong to two system schemas:

pg_catalog: Contains built-in PostgreSQL objects like standard data types (integer,

text, etc.).

information_schema: Contains metadata views about database objects.

b) Filter specific type categories

Limits results to three specific kinds of types:

Other categories like domains (d) or pseudo-types (p) are excluded.

ORDER BY "Schema", "Type Name"

This sorts the results first by schema name and then alphabetically by type name within each

schema. This makes it easier to navigate and analyze.

Suppose you have a database with:

The query would return something like:

Schema Type Name Type

my_schema address_type my_schema.address_type

public custom_int public.custom_int

public status_enum public.status_enum

'b': Base types — fundamental data types like integers or custom base types created

by users.

'c': Composite types — structured user-defined types that group multiple fields.

'e': Enumerated types — user-defined enums with fixed sets of values.

5. ORDER BY Clause

How PostgreSQL Processes This Query

���PostgreSQL starts by scanning the system catalogs (pg_type and pg_namespace) to retrieve

all rows.

���It performs an inner join between these tables using their OIDs (n.oid = t.typnamespace).

This links each type to its corresponding schema.

���The result set is filtered based on:

Excluding system schemas (pg_catalog, information_schema).

Including only certain kinds of types (b, c, and e).

���For each remaining row, PostgreSQL applies the formatting function (format_type()) to make

the output more human-readable.

���Finally, it sorts the results by schema name and then by type name.

Example Output

���A user-defined enum called "status_enum" in schema "public".

���A composite type called "address_type" in schema "my_schema".

���A base custom type called "custom_int" in schema "public".

This is particularly valuable for developers working on complex databases with many custom

data structures!

Why Is This Query Useful?

���Database Introspection: Helps you understand what custom data structures exist in your

database.

���Excludes Noise: Filters out built-in PostgreSQL objects so you can focus on user-defined

ones.

���Schema Organization: Groups results by schema, making it easier to see where each type

is defined.

