🛱 perplexity

Properties of Binary Relations

Binary relations are relationships defined between pairs of elements from a set or between two sets. These relations can have specific properties that help classify and analyze them. Below are the key properties of binary relations:

1. Reflexive

A relation \$ R \$ on a set \$ A \$ is reflexive if every element in \$ A \$ is related to itself. Formally:

$$orall x \in A, (x,x) \in R$$
 .

Example: The equality relation (\$ = \$) on integers is reflexive because every integer is equal to itself $\frac{11}{2}$.

2. Irreflexive

A relation \$ R \$ is irreflexive if no element in \$ A \$ is related to itself. Formally:

$$orall x \in A, (x,x)
otin R$$

Example: The "less-than" relation (\$ < \$) on integers is irreflexive because no integer is less than itself ^[2] [3].

3. Symmetric

A relation R is symmetric if whenever an element x is related to y, then y is also related to x. Formally:

$$orall x,y\in A, (x,y)\in R\implies (y,x)\in R$$

Example: The "is a sibling of" relation is symmetric because if $x \pm s$ is a sibling of $y \pm s$, then $y \pm s$ is also a sibling of $x \pm \frac{2}{3}$.

4. Antisymmetric

A relation R is antisymmetric if whenever both $(x, y) \in R$ and $(y, x) \in R$, it must be the case that x = y. Formally:

$$orall x,y\in A, (x,y)\in R\wedge (y,x)\in R\implies x=y$$

Example: The "less-than-or-equal-to" ($\$ leq $\$) relation on integers is antisymmetric because if $x \ge y \le 12$.

5. Transitive

A relation R is transitive if whenever an element x is related to y, and y is related to z, then x is also related to z. Formally:

$$orall x,y,z\in A, (x,y)\in R\wedge (y,z)\in R\implies (x,z)\in R$$

Example: The "less-than" (\$ < \$) relation on integers is transitive because if x < y and y < z \$, then x < z $\frac{[2]}{[3]}$.

6. Equivalence Relation

An equivalence relation satisfies reflexivity, symmetry, and transitivity. It partitions the set into equivalence classes where all elements within a class are mutually related $\frac{11 [2]}{2}$.

7. Partial Order

A partial order satisfies reflexivity, antisymmetry, and transitivity. It defines a hierarchy or ordering among elements [2] [3].

Understanding these properties enables deeper analysis of binary relations in mathematics and computer science applications such as database theory, graph theory, and discrete mathematics.

**

- 1. https://www.cs.odu.edu/~toida/nerzic/content/relation/property/property.html
- 2. http://web.cecs.pdx.edu/~harry/discrete/slides/Section4.1.pdf
- 3. <u>https://eng.libretexts.org/Courses/Fresno_City_College/Discrete_Mathematics_for_Computer_Science_(J</u> in_He)/03:_Functions_and_Binary_Relations/3.02:_Binary_Relations