
Binary relations are relationships defined between pairs of elements from a set or between two

sets. These relations can have specific properties that help classify and analyze them. Below are

the key properties of binary relations:

A relation $ R $ on a set $ A $ is reflexive if every element in $ A $ is related to itself. Formally:

Example: The equality relation �$ � $) on integers is reflexive because every integer is equal to

itself .

A relation $ R $ is irreflexive if no element in $ A $ is related to itself. Formally:

Example: The "less-than" relation �$ � $) on integers is irreflexive because no integer is less

than itself .

A relation $ R $ is symmetric if whenever an element $ x $ is related to $ y $, then $ y $ is also

related to $ x $. Formally:

Example: The "is a sibling of" relation is symmetric because if $ x $ is a sibling of $ y $, then $ y

$ is also a sibling of $ x $ .

A relation $ R $ is antisymmetric if whenever both $ (x, y) \in R $ and $ (y, x) \in R $, it must be

the case that $ x = y $. Formally:

Example: The "less-than-or-equal-to" �$ \leq $) relation on integers is antisymmetric because if

$ x \leq y $ and $ y \leq x $, then $ x = y $ .
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A relation $ R $ is transitive if whenever an element $ x $ is related to $ y $, and $ y $ is related

to $ z $, then $ x $ is also related to $ z $. Formally:

Example: The "less-than" �$ � $) relation on integers is transitive because if $ x < y $ and $ y <

z $, then $ x < z $ .

An equivalence relation satisfies reflexivity, symmetry, and transitivity. It partitions the set into

equivalence classes where all elements within a class are mutually related .

A partial order satisfies reflexivity, antisymmetry, and transitivity. It defines a hierarchy or

ordering among elements .

Understanding these properties enables deeper analysis of binary relations in mathematics and

computer science applications such as database theory, graph theory, and discrete

mathematics.
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